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A
s modern wireless communications systems 
(mainly superheterodyne radio transceivers) 
are now required to deliver higher perfor-
mance than ever before, they’re placing greater 

demands on the frequency sources for these systems. Such 
systems are moving higher in frequency (millimeter-wave, 
or mmWave, and possibly terahertz regions), tuning wider 
bandwidths (BWs), thus processing more complex wave-
forms using more elaborate modulation schemes and oper-
ating in fast tuning modes. 

This i s h appening in both the commercial and military 
arenas; examples include satellite communications and 
repeaters, terrestrial wireless systems such as the present 
5G15,16 and eventually 6G17,18 protocols, and tactical line-
of-sight radios, among others. Therefore, the frequency 
sources, and particularly the local oscillators (LOs) for 
these systems, must also move commensurately higher in 
frequency and deliver higher performance in terms of low 
phase noise (the primary interest), low spurious, and fast 
tuning speed.

In some cases, LOs using direct (mix-multiply-divide, 
MMD) synthesizers are needed to achieve this performance, 
but they’re usually not the lowest in size, weight, and power
(SWaP), cost, and complexity. However, in many cases, LOs
using indirect (phase-locked loop, or PLL) synthesizers can
be utilized with excellent results, rivaling the performance
of direct synthesizers. And they’re usually lowest in SWAP,
cost and complexity, which is our thesis here.

For our case of PLL synthesizers and, concerning our 

priority interest in low phase noise, this means that, for the 
relevant PLLs, as their operating frequencies become higher, 
their loop BWs must become commensurately wider (i.e., 
fractional loop BW is the ultimate interest) to achieve low 
phase noise. By applying the special technique shown here, 
it’s possible to achieve very wide loop BWs in such synthe-
sizers, which can’t be achieved by conventional methods. 

In terms of “relevant PLLs,” we mean those PLLs com-
prising the synthesizer that have significant influence on  
the operating band phase noise. For multiple PLL systems, 
this usually means the output PLL, which is normally the 
highest-frequency PLL. 

In addition to the use of very wide loop BWs, the use of 
unity closed-loop (CL) gain along with only internal (with-
in any relevant PLL) multiplication also assists in achieving 
low phase noise. The technique is applied here to an 
example synthesizer (see figures) that’s a single-loop 
(thereby having only one relevant PLL, simplifying the 
situation), Type 2 - 2nd Order system with a 1st Order 
active proportional-integral (PI) loop filter, which is used 
as a local oscillator in an actual working and fielded high-
performance receiver. 

The 1st order PI active loop filter is widely used, so the 
technique has broad applicability. It can also be applied to 
PLLs using other topologies with appropriate 
modifications. The example synthesizer is based on 
analog hardware because of the high-frequency loop 
dynamics involved, rather than digital (or computed) 
hardware/software approaches, which are limited by 
present-day computing speeds.

How to Design Very Wide 
Loop BW High-Performance 
PLL Frequency Synthesizers 
(Part 1)
By using a special technique to produce very wide loop bandwidths in high-frequency 
PLLs, it’s possible to achieve very low phase noise rivaling that of direct (MMD) 
synthesizers, though with reduced size, weight, power, cost, and complexity.
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Description of the Technique
The technique is fairly simple and can be found in appli-

cable literature.1,2 However, before discussing the method-
ology, it’s advantageous to preface the discussion with some 
points concerning analog hardware PLL synthesizers. That 
said, aside from performance specifications defining the to-
pology, there are normally five major circuit implementa-
tion factors to consider for any relevant PLL: 

1. Discrete vs. IC or combination systems
2. Voltage vs. current output phase detection
3. Single vs. dual (not differential) output phase detection
4. Low-voltage vs. high-voltage output phase detection
5. Low-voltage vs. high-voltage voltage-controlled-oscil-

lator (VCO) control 
The technique discussed here is applicable when low-volt-

age output phase detection is combined with high-voltage 
VCO control, which covers many important applications. 
This includes our example that requires high performance, 
since high-voltage VCOs provide high performance in 
terms of low phase noise (and low reference spurious) due to 
having relatively low VCO constant Kv,6 compared to low-
voltage VCOs.

The technique, as applied to our example synthesizer that 
is a single-loop, Type 2 - 2nd Order system with a 1st Order 
Active PI Loop Filter, involves taking the loop filter using a 
single active device (normally an op amp) and splitting the 
proportional and integral functions into two separate paral-
lel paths. Each path would use its own active devices, with 
the devices having BWs commensurate with their functions. 
Then the outputs would be recombined or summed to pro-

vide a common VCO control signal. It will be referred to as 
the “dual-path” technique, and we’ll refer to the loop filter as 
a 1st Order dual-path active PI loop filter. 

Such a technique is necessary when a single op amp 
having very high gain-BW product, very low equivalent 
voltage and current noise, and high DC supply voltage 
capability is unavailable to be used as both proportional and 
integral ampli-fiers, which was the situation in our case. The 
approach isn’t new, as it has been known for many years, but 
it’s not known to have been applied until now and as 
described here. However, it may start to be more widely 
implemented due to the reasoning discussed above.

Example Frequency Synthesizer Application and Specs 
As was mentioned above, and discussed in more de-

tail here, an example single-loop PLL synthesizer used as 
a high-side 1st LO in an actual working and fielded high-
performance (i.e., high frequency, wideband, complex de-
modulation, and fast tuning) superheterodyne receiver,5 is 
presented with the priority interest being in producing the 
lowest possible phase noise. Producing the lowest possible 
phase noise for the synthesizer is important, as the 1st LO 
would be the highest contributor to overall receiver phase 
noise. 

Specifications are as follows:
• Operating band: 22.5 - 39.9 GHz (upper µW / lower

mmWave territory)
•  Channel spacing / Number of operating frequencies:

200 MHz / 88
• Reference frequency / Range: 400 MHz (fixed)
• Phase continuity: Continuous for adjacent channel step

Block diagram of the synthesizer single-loop PLL section showing key components (most importantly, the 1st Order dual-path active PI loop 

filter).
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phase and frequency
• Stability: Phase margin (fm) > 45o, gain margin (Gm) >

10 dB
•  Single-side-band (SSB) phase noise: < 350 mdeg, inte-

grated over offset frequencies from 100 Hz to 40 MHz
• Spurious:

• −60 dBc within ±500 MHz of carrier
•  90 dBm within ±(500 to 2,000) MHz offset from

carrier
• Switching time: < 25 µs between any two random chan-

nels, from unspecified transient overshoot to steady-
state frequency offset of < 100 kHz (< 5.75 PPM over full 
(end-to-end) operating band and < 500 PPM between
adjacent channels) and to within output power window
of +12 ±4 dBm

•  Output power and flatness: +12 ±4 dBm over operating
band (without active power leveling)

• DC operating power: 12.5 W maximum
• Environment: Operating temperature range of −20 to

+70oC case

Because of the high frequency and high performance of 
the synthesizer, the components used are all discrete. Also, 
all parts are of the packaged surface-mount variety (i.e., 

hybrid chip-and-wire technology isn’t used). These are, of 
course, the electrical and environmental specifications only; 
mechanical specifications aren’t included.

The above information will be used in the upcoming Part 
2, where the example synthesizer general design approach 
and detailed design, which incorporates the technique, will 
be discussed.
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Block diagram (simplified) of the synthesizer Reference - I/O - Power Section, showing key components. 
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