
NASSIM ABDERRAHMANE, AI Product Manager,
Menta, https://www.menta-efpga.com/

D
esigners continue to face greater challenges in
the development of advanced embedded sys-
tems. Functionality and connectivity create lay-
ers of added integration and complexity that

often make it difficult to provide an optimum logic architec-
ture to manage a given system, especially if it’s a system-on-
chip (SoC). Let’s explore the anatomy of an eFPGA and how
to achieve the best optimization of silicon resources with the
maximum amount of flexibility.

If we strip an FPGA into its component parts, we find pri-
marily a core, typically containing the logic, memory, other
macros such as DSP, interconnect grid of wires, switches,
and other compute elements, arranged in a grid or matrix.
The I/O ring usually contains high-speed interfaces to the
physical world, such as SerDes, LVDS, CMOS, and TTL in-
terfaces. An eFPGA is essentially just the core of an FPGA
without the I/O ring.

When it comes to the integration and functions required
in an IC design, we find that many IP blocks must be in-
tegrated. Typically, there would be things such as a micro-
processor (or 16!), PLLs, memory controllers, various buses,
cache controllers, and the like. However, with the larger in-
tegration of logic functions and IP blocks, there needs to be
a way of changing or updating an IC after production in a
cost-effective manner.

Advanced IC Designs Replace Board-Level Systems
We’re entering an age where lots of legacy PCB-mounted

ICs are getting mopped up and placed into a single mono-
lithic IC or chiplets as an SoC. One issue is that IC design
teams could miss a market area or a timeline if they don’t
incorporate the correct features, or end up finding bugs in
portions of the design. An FPGA has been traditionally used
to either prototype an IC or add flexible functionality to a
design on a PCB, or to just integrate all of the simpler I/O
and control functions (and fix/add any last-minute require-
ments).

However, since the advent of higher levels of integration,
we’re starting to hit massive bandwidth bottlenecks and I/O
constraint issues, such as the inability to physically bond out
enough I/Os in the space given on an IC package. We’re see-
ing BGA packages of 2048+ I/Os at 0.5-mm pitch and below
on a PCB, which causes a whole number of issues. These in-
clude physical pin density, routing congestion, layer counts
with lots of micro-vias and stackup/lamination issues, and
speed issues leading to signal-integrity problems such as si-
multaneous switching noise and crosstalk.

In addition, I/Os burn power and consume lots of silicon
real estate, while requiring separate power rails for all of the
different I/O standards. Though every effort has been made
to ensure the accuracy of information contained herein, fea-
tures, specifications, and technical information are subject
to change without notice.

With all of this in mind, we must think about how to push
past design limitations going forward. Offering a solution to
these issues, an eFPGA is a matrix of LUTs/memory/DSP/
compute elements that can be configured to be any size
within the limits of the semiconductor die and real-estate
requirements. It also provides a nearly limitless number of
I/O interface pins, as many as allowed by the semiconductor
design rules.

How an eFPGA Can Empower a System’s Design
It’s quite common to see a square design with 1,000 I/Os

per side, for a total of 4,000 user I/O’s. An implicit advan-
tage of using an eFPGA is that you can run at internal IC
speeds, with no I/O bound interface limitations through
LVDS, SerDes, CMOS, and others, along with very wide bus
interfaces.

This greatly benefits designers, as they can run at system
speeds on the IC die and have large buses to push data in
or out of a definable logic/compute element. Such definable
logic can be designed after the IC has gone for tapeout and
be updated in the field or at production time, customizing

Maximize Flexibility in
SoC Design with eFPGAs
An eFPGA is an FPGA that’s embedded into an ASIC to provide one or more
programmable-logic fabrics for flexibility and cost/performance benefits.

☞LEARN MORE @ electronicdesign.com | 1

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

the product as required.
For example, Figure 1 shows Menta’s eFPGA that’s com-

posed of smaller elements, with the I/Os and the compo-
nents that make up the Matrix. The I/O Block contains op-
tional registered I/Os with D-FFs so that the design can be
clocked and timing can be closed at the interface level.

The embedded Custom Block (eCB) is a customer-specif-
ic definable function or hard macro that can be integrated
into the matrix. This might be some definable AI or convo-
lution function that’s proprietary, or a mixed signal Digital/
Analog block with a Digital interface (which is a feature of
Menta’s product offering).

The Configuration I/O is the interface in which users pro-
gram the eFPGA bitstream with their customizable logic,
and the DFT I/O is the Design For Test interface that enables
the eFPGA to be fully checked for design flaws after manu-
facturing. There’s also an embedded Logic Block (eLB). The

DSP block is a DSP element containing a pre-processing
FIR/IIR filter block. And the usual Multiply/Accumulate
functionality can be cascaded to make up larger DSP ele-
ments.

The embedded Memory Block (eMB) is an instantiated
memory from the silicon foundry or a third party and can
easily be integrated into the eFPGA definition. In addition,
an Interconnect grid of wires and switches connect these el-
ements together to make up the defined circuits and func-
tion. This isn’t shown in Figure 1 for brevity, but it can be
assumed to be embedded where the grid lines are located.
(Definable in an eFPGA means at design time/specification
time and not after production.)

Addressing Programmable Logic
When it comes to programmable logic, the key is in the

lookup tables (LUTs), which are part of the eLBs. A LUT is
really a set of multiplexers that allows for the individual ad-
dressability of any input bit. It can create any combinational
logic required by the user. This is done by hardwiring the
inputs of a LUT to a predetermined value and then using
the inputs to the LUT to provide the correct logic output by
addressing the appropriate individual bit.

Figure 2 shows an example of a simple LUT that has three
inputs I[2:0], eight hardwired inputs H[7:0], and one output
O[0]. If we create a Truth Table (Fig. 3) of this, whereby we
want to implement an AND gate (O[0] = I[2].I[1].I[0]), we
can see that by addressing the element I[2:0] = 3’b111, we
return bit H[7] of the LUT.

Figure 4 looks at a more complicated function: O[0] =
(/I[2]./I[1])+I[0].

As can be seen in Figures 2, 3, and 4, a LUT can be con-
figured to map to any logic function as required. In essence, 2, An example of a simple LUT.

1. Menta’s eFPGA consists of smaller elements, with the I/Os and components that make up the Matrix.

☞LEARN MORE @ electronicdesign.com | 2

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

a lookup table is a one-data-bit ROM configured to create
logic functions. The LUT can be mapped to any Truth Table
mapping function. The inputs to the LUT are the logic func-
tion’s inputs, and the contents from the lookup from the
ROM give the logic equivalent outputs.

In this example, we only have a three-input LUT. How-
ever, in more complex devices, there are four-, five-, six-,
seven-, and even eight-input LUTs that make the LUT sizes
increase with inherently longer delays.

LUTs have various optimal sizes, which are chosen by the
manufacturers of the eFPGA and FPGAs to best fit the trad-
eoff between the logic density requirements and speed. The
“H” bits are known as “configuration bits” since they config-
ure the function of the eFPGA’s logic mapping.

The LUT is the combinational logic part of the puzzle in
the eLB. However, another part of the puzzle is the D-FF,
because most designs are synchronous (clocked) designs.
All that’s required is to add a D-FF to the output of the LUT
block (O[0]) so that the logic can be registered.

There are other elements within the eLB, but that requires
much more explanation and isn’t relevant to this level of de-
scription. The D-FFs have the ability to be SET and RESET
and the choice of which edge is used to clock can also be
assigned. More ‘configuration bits’!

At this point, you should understand how an eFPGA (and
FPGA) gets its programmability. One other important ele-
ment is the Switch Box. It’s basically a cross-point switch
that can connect any input to any output with configuration
bits to program its function.

For example, a 16 I/O switch box would have four I/O on
either side of a square and be able to route any of the points
to another point. Switch Boxes are custom-crafted to the ar-
chitecture of the eFPGA/FPGA with various optimizations
for speed/power/routability. The Switch Boxes are wired to
metal lines and to the inputs and outputs of the eLBs (LUTs,
etc.) to provide a routing path between the LUTs, Memory,
DSP, and Compute elements.

Arranging all of these elements on a grid of wires, the

LUTs, Memory, DSP, and Compute elements as well as the
Switch Boxes make it possible to build an eFPGA. There’s
also the storage of the “Configuration bits,” which is where
manufacturers differ in their strategies. Most eFPGA and
FPGA providers use SRAM bitcells, while Menta decided to
use D-FFs.

There are some very good reasons for using D-FFs.
They’re typically more radiation tolerant due to their nature
as a master-slave system—if a stray particle hits one of the
elements, it’s unlikely to cause corruption. An SRAM cell
has a dense array, susceptible to a stray particle that can flip
the value of a bit.

As process geometries shrink, this is becoming more of an
issue due to the thickness of the oxides and metal not being
able to disperse the stray particles. Since Menta has standard
D-FF at the heart of its technology, there’s no reason why a
user can’t use triple module redundant (TMR) techniques
with the understanding that an area and speed penalty oc-
curs when implementing a design this way.

Lastly, SRAMs require proprietary libraries from a silicon
foundry which, most of the time, forces eFPGA providers
to design their own bitcells. This creates another path for
potential issues in the design.

The configuration SRAM needs some fairly complex log-
ic to shift data bits through them as well as address them.
SRAM cells are also more prone to manufacturing errors:
They push the boundaries of semiconductor manufacturing
technologies because they use the highest packing density
techniques (very small geometries). On a side note, yielding
SRAM requires redundancy, which is cumbersome for eF-
PGAs. All in all, and thanks to architecture patents Menta’s
D-FF implementation doesn’t lead to a silicon area penalty
compared to SRAM-based eFPGA IPs.

Another unseen advantage of using D-FF is that Menta’s
eFPGA may be synthesized very quickly into a customer’s
product. All of the elements are standard cells; you can use
any semiconductor foundry library and synthesize your cus-
tom eFPGA IP into your design quickly.

3. The LUT’s Truth Table. 4. A more complicated function for the Truth Table.

☞LEARN MORE @ electronicdesign.com | 3

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

Other vendors provide “hard” macros, and they must
pre-qualify their IP blocks in a particular process/foundry
geometry. This can take lots of time since they have to do
layout, a netlist comparison, and timing and parasitic ex-
traction before being able to commit a design to a particular
process/foundry geometry.

Menta can provide the eFPGA verilog/VHDL netlist im-
mediately to the design team so that they can start integrat-
ing and floorplanning, as well as optimize their IP require-
ments (eLB/DSP/MEM/eCB mix). Obviously, there are
guidelines on how the layout is done; Menta provides this
as part of the deliverables of what’s called “soft” IP. The com-
pany can also provide a service for layout of the IP if needed.

DSP Blocks
The DSP blocks in eFPGAs comprise a synchronous mul-

tiply-accumulate architecture that’s wholly based on logic.
The iterative nature of these devices can be incredibly fast,
and unlike a CPU/GPU, they don’t need instruction streams
to direct how the iterations are performed. In a CPU/GPU
architecture, there must be a Fetch-Execute-Store process
where the CPU/GPU fetches an instruction, decodes the
instruction, performs the operation in an ALU, and then
stores the data back into memory or registers.

Doing DSP operations in a CPU/GPU comes with a heavy
cost, which basically involves the memory loads and stores
along with instruction decodes. A CPU doesn’t lend itself
to a streaming DSP capability very well. The way in which
hardware-based DSP architectures differ is that they per-
form bitwise mathematics in native standard-cell gates.

Figure 5 shows a DSP block and its constituent parts. On
the left are the inputs A and B as bit vectors to do the math
on, as well as Cin as a supplemental Carry input. We’ll ig-
nore the green “FIR” box for now (assume the signals pass
straight through it).

A and B will eventually be passed onto a multiplier as
AF1and BF1, which will produce an intermediate product—
let’s call it P1. P1 is then taken into a Math block, where it
can be added to P3; P3 was the last result (i.e., a value held in
an accumulator). The output of P2 can have its sign changed,
too, to provide the desired output.

In effect, the simple math function described so far is:
P = (A * B) + LAST_VAL, or
P = (A * B) - LAST_VAL
Regarding the Carry input Cin, by adding a carry input to

the addition, we can take into account overflows from oth-
er previous calculations. Because the Carry can be shifted,
we’re also able to change the carry’s significance to the input.
This Cin is called a “Pre-adder” since it can have different
weightings/significance.

When looking at the Pre-adder block, you’ll notice that in
the path before AF1, there’s an arithmetic block with unary
sign “inversion” capabilities. This means that we can effec-
tively change the input on Cin or A to become negative.

As a result, we can add the new math functions to the ca-
pability by the use of the pre-adder. The equation becomes:

P = ((±A ± Cin) * B) ± LAST_VAL
Not to overcomplicate things, but the Pre-adder has more

capabilities than I’ve shown here. However, that would take
us beyond the scope of this article. The FIR/IIR engine is a

5. Shown is a DSP block and its constituent parts.

☞LEARN MORE @ electronicdesign.com | 4

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

patented Menta technology that provides finite impulse re-
sponse (FIR) or infinite impulse response (IIR) filtering, a
common requirement for DSP algorithms. It’s a pre-process
that can perhaps be used for harmonic or spur removal in
the original signal; it comes for free as part of the DSP block.
It can be bypassed if not needed.

The Menta DSP Block also provides a “Cascade” ability
that enables the DSP blocks to be daisy-chained together to
provide a larger/wider “DSP” elements. The obvious penalty
is that the daisy-chained DSP function has been moved on
to another pipeline stage. The application side has a wide
number of use cases for DSP mathematics. This includes:

• Convolution
• Filtering
• Modulation and demodulation
• Mixing/summing/decimation
• Image processing (kernel mathematics)
• �Matrix mathematics (real and complex number math is

capable in the DSP block!)
• FFT, DFT, Correlation, etc.
• SDR (software-defined radio)—I/Q schemes

Tools and Workflow
Once an eFPGA IP has been designed, you’ll want to do

some FPGA work for your application. This would include
writing RTL (the application at hand), synthesizing the log-
ic, placing and routing the design and extraction of timing,
and static timing analysis.

Menta has a set of internally developed tools called Ori-
gami, a full development suite that provides what’s needed

to implement a design. This suite of programs is integrated
under an umbrella GUI, but it can also be run individually
at the command prompt using TCL/TK scripts.

Many designers are accustomed to automation in their
workflow using TCL/TK scripts. Origami can be easily inte-
grated into this flow (Fig. 6). Origami can read all RTL lan-
guages (Verilog, System Verilog, and VHDL in all of their
defined standards), perform automatic hierarchy recogni-
tion, do synthesis into an internal netlist, perform optimized
place and route (based on your I/O mapping), and generate
a mapping file for the configuration bitstream data.

In addition, Origami does static timing analysis and will
provide a back-annotated SDF netlist for post place-and-
route simulation. The timings are extracted from sign-off
EDA tools for the eFPGA IP design, thanks to the third-
party standard cell libraries, and they remain under the full
control of the customer.

Origami can optimize logic to also use DSP elements
where it sees fit, and the user can choose what kind of opti-
mization they want to map to DSP blocks to implement de-
signs highly optimized for speed where math is concerned.
Once Origami completes the workflow a bitstream file is
produced and this bitstream would then be written to the
programming interfaces of the eFPGA to configure the eF-
PGA for its end function as per the user’s design/applica-
tion. This enables the host to store multiple bitstreams with
different functions and these may be chosen and written
(downloaded) to the eFPGA as required providing a choice
of hardware functions.

By carefully selecting your mix of DSP and LUTs, you can

6. Many designers are accustomed to automation in their workflow using TCL/TK scripts.

☞LEARN MORE @ electronicdesign.com | 5

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

achieve better packing ratios and functional speeds (Fig. 7).
This optimization process is iterative and depends heavily
on the design. This is where you need to engage with the
eFPGA vendor.

eFPGA Considerations
When choosing an eFPGA, you should be aware of your

range of applications and what you want to achieve. eFPGA
vendors provide a vehicle where you can add flexibility to
your custom IC, but you must be aware of the limitations
of what’s achievable with an eFPGA. Clock speeds will be
less than raw standard-cell ASIC design and porting a por-
tion of your current ASIC IP (Verilog and VHDL) will likely
require some custom work.

Typically, we find that ASIC IPs use gated clocks, which
is a big NO for FPGAs, so expect some handcrafting. Opti-

mization of code can significantly reduce logic use, too, be-
cause an eFPGA/FPGA has larger blocks to which the logic
is mapped. FPGAs map into LUTs and D-FFs, whereas a
custom ASIC maps into standard or full custom cells.

For DSP applications, you would need to carefully craft
your DSP code and/or define an optimal architecture to take
advantage of the DSP elements if you wish to get the high-
est performance/utilization of elements. You must also be
aware of the programming interface and be able to send in a
bitstream from your design (ROM, CPU, etc.), with a solid
design-for-test plan and strategy.

The benefits of an eFPGA are flexibility, design reuse, the
ability to make post tapeout changes to fix bugs or change al-
gorithms, and the possibility for a customer to make a more
general ASIC that can be customized for different products.

7. By carefully selecting your mix of DSP and LUTs, you can achieve better packing ratios and functional speed.

☞LEARN MORE @ electronicdesign.com | 6

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

