
By BILL LAMIE, President and CEO, PX5 RTOS

A
quick internet search shows a seemingly endless number of real-time operating systems (RTOSes), most based
on proprietary application programming interfaces (APIs). That’s certainly true for the more popular embed-
ded RTOSes, e.g., FreeRTOS, ThreadX, and Zephyr. Some of these proprietary RTOS APIs provide adequate
functionality.

However, each proprietary API impedes embedded development by requiring extensive developer training, constricting
cross-platform code sharing, and effectively locking the application to the proprietary RTOS.

Developer training is time-consuming and expensive. In addition, proprietary API usage errors resulting in product de-
fects are all too common. For device makers with MPU- (Linux) and MCU- (RTOS) based designs, sharing code between
platforms is difficult, if not impossible.

Finally, since the application is locked into the RTOS, it’s at the mercy of what processor and development tools are sup-
ported by that particular RTOS. Not having the ability to freely migrate your application to another hardware platform or
development tool might be the most significant impediment of all.

But instead of focusing on the negative aspects of proprietary RTOS APIs, it’s more productive to focus on solutions. In-
terestingly, the answer has been around since 1995. This is when the POSIX Threads standard (commonly called pthreads)
was introduced (IEEE 1003.1c-a995). Not only is this an international standard, it’s also the multithreading API in every
embedded Linux distribution. Hence, POSIX pthreads is already the most popular API standard in the embedded industry.

Is the POSIX pthread API as functionally capable as proprietary RTOS APIs? Here’s a brief overview of the POSIX
pthread API alongside the most popular proprietary RTOS APIs.

Creating Threads in POSIX
Creating threads (also called tasks) is the most fundamental RTOS primitive. The POSIX pthread create API is ideally

suited for embedded applications. Having only four arguments, it’s much simpler than other popular RTOS APIs. The
POSIX pthread API offers an optional attribute specification if additional configuration is required. Here are the thread
creation APIs for POSIX pthreads, ThreadX, FreeRTOS, and Zephyr:

IEEE POSIX pthread standard
 int pthread_create(pthread_t* thread_handle,

 pthread_attr* attributes,
 void* (*thread_entry)(void *),
 void * thread_arguments);

Proprietary RTOS APIs

ThreadX:
 UINT tx_thread_create(TX_THREAD* thread_handle, CHAR * name,

 VOID (*thread_entry)(ULONG), ULONG thread_argument,
 VOID * stack_memory, ULONG stack_size,
 UINT priority, UINT preemption_threshold,

Proprietary RTOS APIs
Impede Development
Open standard RTOS application programming interfaces, such as POSIX pthread,
help enhance software development.

☞LEARN MORE @ electronicdesign.com | 1

https://www.freertos.org/
https://threadx.io/
https://zephyrproject.org/
https://standards.ieee.org/ieee/1003.1/7700/
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

 ULONG time_slice, UINT auto_start);
FreeRTOS:
 BaseType_t xTaskCreateStatic(TaskFunction_t pvTaskCode,

 const char* const pcName,
 const uint32_t ulStackDepth,
 void* const pvParameters, UBaseType_t uxPriority,
	 	 	 	 StackType_t*		const	puxStackBuffer,
	 	 	 	 StaticTask_t*	const	pxTaskBuffer);
Zephyr:
 k_tid_t k_thread_create(struct k_thread* new_thread,

 k_thread_stack_t *stack,
 size_t stack_size, k_thread_entry_t thread_entry,
 void* p1, void* p2, void* p3, int prio,
 uint32_t options, k_timeout_t delay);

USING MUTUAL EXCLUSION WITH POSIX

Mutual exclusion is required in embedded systems to coordinate access to shared resources. The mutual-exclusion primi-
tives in POSIX are similar to the APIs in other RTOS. One difference in POSIX is that additional APIs offer timeouts for
waiting on a mutex. Most proprietary RTOS APIs have an additional parameter that determines the timeout. Here are the
typically used mutual-exclusion APIs for POSIX pthreads, ThreadX, FreeRTOS, and Zephyr:

IEEE POSIX prthread API for creating a mutex
POSIX:
int pthread_mutex_init(pthread_mutex_t* mutex_handle,

 pthread_mutexattr_t* mutex_attributes);

Proprietary RTOS API for creating a mutex
ThreadX:
UINT tx_mutex_create(TX_MUTEX* mutex_handle, CHAR* name,

 UNIT inheritance_option);
FreeRTOS:
SemaphoreHandle_t xSemaphoreCreateMutex(void);

Zephyr:
int k_mutex_init(struct k_mutex* mutex);

IEEE POSIX pthread API for locking a mutex
 int pthread_mutex_lock(pthread_mutex_t* mutex_handle);

Proprietary RTOS API for locking a mutex
ThreadX:
UINT tx_mutex_get(TX_MUTEX* mutex_handle, ULONG suspend_option);

FreeRTOS:
UBaseType_t xSemaphoreTake(SemaphoreHandle_t xSemaphore,

 TickType_t xTicksToWait);
Zephyr:
int k_mutex_lock(struct k_mutex* mutex, k_timeout_t timeout);

IEEE POSIX pthread API for unlocking a mutex
 int pthread_mutex_unlock(pthread_mutex_t* mutex_handle);

☞LEARN MORE @ electronicdesign.com | 2

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

Proprietary RTOS API for unlocking a mutex
ThreadX:
UINT tx_mutex_put(TX_MUTEX* mutex_handle);

FreeRTOS:
UBaseType_t xSemaphoreGive(SemaphoreHandle_t xSemaphore);

Zephyr:
int k_mutex_unlock(struct k_mutex* mutex);

MULTIPLE THREAD SYNCHRONIZATION USING POSIX

Synchronizing the execution of multiple threads is an important RTOS primitive. A classic example is the producer-
consumer paradigm, whereby one thread processes information produced by another thread or interrupt handler.

Counting semaphores is often utilized in a producer-consumer fashion. The thread responsible for processing the infor-
mation waits for a semaphore. When the information is ready, the producer sends the semaphore.

POSIX semaphore APIs are similar to proprietary RTOS semaphore APIs. One difference is that POSIX has additional
APIs when a timeout is required to wait for a semaphore. Most proprietary RTOS APIs have an additional parameter that
determines the timeout. Here are the commonly used semaphore APIs for POSIX, ThreadX, FreeRTOS, and Zephyr:

IEEE POSIX API to create a semaphore
 int sem_init(sem_t* semaphore_handle, int pshared,

 unsigned int value);

Proprietary RTOS APIs to create a semaphore
ThreadX:
UINT tx_semaphore_create(TX_SEMAPHORE* semaphore_handle,

 CHAR* name, ULONG initial_count);

FreeRTOS:
SemaphoreHandle_t xSemaphoreCreateCounting(UBaseType_t

 uxMaxCount, UBaseType_t unInitialCount);

Zephyr:
int k_sem_init(struct k_sem* sem, unsigned int initial_count,

 unsigned int limit);

IEEE POSIX API to obtain a semaphore
 int sem_wait(stm_t* semaphore_handle);

Proprietary RTOS APIs to obtain a semaphore
ThreadX:
UINT tx_semaphore_get(TX_SEMAPHORE* semaphore_handle,

 ULONG suspend_option);

FreeRTOS:
UBaseType_t xSemaphoreTake(SemaphoreHandle_t xSemaphore,

 TickType_t xTicksToWait);
Zephyr:
int k_sem_take(struct k_sem* sem, k_timeout_t timeout);

☞LEARN MORE @ electronicdesign.com | 3

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

IEEE POSIX API to post a semaphore
 int sem_post(sem_t* semaphore_handle);

Proprietary RTOS API to post a semaphore
ThreadX:
UINT tx_semaphore_put(TX_SEMAPHORE* semaphore_handle);

FreeRTOS:
UBaseType_t xSemaphoreGive(SemaphoreHandle_t xSemaphore);

Zephyr:
int k_sem_give(struct k_sem* sem);

Thread Communication in POSIX
Communicating information between multiple threads for processing is another important RTOS primitive. The thread

responsible for processing the information can wait for a message from a queue. When the message is available, the waiting
thread is given the message for processing and is resumed.

POSIX message-passing APIs are similar to proprietary RTOS APIs. There are differences, though. POSIX supports vari-
able-sized messages and message priority. POSIX also has additional APIs when suspension timeouts are required. Most
proprietary RTOS APIs have an additional parameter that determines the message waiting timeout. Here are the commonly
used message queue APIs for POSIX, ThreadX, FreeRTOS, and Zephyr:

IEEE POSIX Message Queue Create API
 mqd_t mq_open(char* queue_name, int operation, mode_t mode,

 mq_attr* attributes);

Proprietary RTOS Message Queue Create APIs

ThreadX:
UINT tx_queue_create(TX_QUEUE* queue_handle, CHAR* name,

 ULONG message_size, VOID* queue_memory,
 ULONG memory_size);

FreeRTOS:
QueueHandle_t xQueueCreateStatic(UBaseType_t uxQueueLength,

 UBaseType_t uxItemSize,
	 	 	 	 	 	 uint8_t*		pucQueueStorageBuffer,
	 	 	 	 	 	 StaticQueue_t*		pxQueueBuffer);

Zephyr:	 	 void		k_msgq_init(struct	k_msgq*		msgq,	char*		buffer,	
 size_t msg_size, uint32_t max_msgs);

IEEE POSIX Message Send API
 int mq_send(mqd_t queue_handle, char* message,

 size_t message_size, unsigned int message_priority);

Proprietary RTOS Message Send API
ThreadX:
UINT tx_queue_send(TX_QUEUE* queue_handle,

 VOID* message_pointer, ULONG suspend_option);

FreeRTOS:

☞LEARN MORE @ electronicdesign.com | 4

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

BaseType_T xQueueSend(QueueHandle_t xQueue,
 void* pvItemToQueue, TickType_t xTicksToWait);

Zephyr: int k_msgq_put(struct k_msgq* msgq, const void* data, k_
timeout_t timeout);

IEEE POSIX Message Receive API
 int mq_receive(mqd_t queue_handle, char* message,

 size_t message_size, unsigned int* message_priority);

Proprietary RTOS Message Receive APIs
ThreadX:
UINT tx_queue_receive(TX_QUEUE* queue_handle,

 VOID* message_pointer, ULONG suspend_option);

FreeRTOS:
BaseType_t xQueueReceive(QueueHandle_t xQueue, void* pvBuffer,

 TickType_t xTicksToWait);

Zephyr:
void* k_msgq_get(struct k_msgq* msgq, void* data,

 k_timeout_t timeout);

POSIX PTHREAD API VS. PROPRIETARY RTOS APIs

It’s clear that the POSIX pthread API is similar and just as capable as proprietary RTOS APIs for the most common mul-
tithreading primitives associated with thread management, mutual exclusion, synchronization, and message passing. The
POSIX API is actually more straightforward in some cases—like creating a thread. Any missing functionality in POSIX can
be augmented with API extensions.

Since most developers have some experience with POSIX pthreads, training and usage errors are significantly reduced or
even eliminated. Sharing code with embedded Linux and/or moving to another RTOS that supports POSIX pthreads is easy.
RTOS migration to the industry-standard IEEE POSIX pthread API promises to reduce time-to-market and enhance code
reuse—welcome advances in our embedded industry.

Bill Lamie is President/CEO of PX5 RTOS. Bill has been in the commercial RTOS space for over 30 years – first with Acceler-
ated Technology (acquired by Siemens) and then with Express Logic (acquired by Microsoft). Bill was also the sole author of
Nucleus and ThreadX.

☞LEARN MORE @ electronicdesign.com | 5

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

