
By FRANCO CONTADINI, Staff Engineer, and
ALESSANDRO LEONARDI, Account Manager, Field Sales,

Analog Devices Inc.

E
valuating a simple charging sys-
tem and testing its functional-
ity can typically be done with an
evaluation kit. These kits include

all of the necessary hardware and soft-
ware applications, as well as graphical
user interface (GUI)-based tools and
APIs, to configure charging systems.

However, complex systems that re-
quire multiple cells are correspondingly
more difficult to evaluate. Complex sys-
tems may have several devices that must
be characterized. Developers will need
to write some software code to read the
signals generated from different system
parts, analyze them, and take action.

Consider two Li+ cells in a paral-
lel battery fast-charging system using
the MAX17330. As described in the
datasheet, the MAX17330 can be used
to charge and control two Li+ cells si-
multaneously. This system requires two
MAX17330 ICs, each managing one
Li+ cell, and a buck converter (such as
the MAX20743) with the capability to
change its output voltage on-the-fly.

A microcontroller is required to configure and manage battery charging as well as handle communication between the
two ICs. Because it’s a commonly used platform for system testing, we chose a Raspberry Pi board using Python as the
programming language. The Raspberry Pi manages communications over I2C and logs important system parameters useful
for evaluation and debugging, including charge current, battery voltage, and battery state of charge (SOC). These values are
stored in an Excel file to enable offline analysis.

Testing the 1S2P Architecture
This section shows how the charger and fuel gauge (MAX17330) are tested. It also describes the real performance that

can be expected from parallel charging. For the most flexibility and control, the device is programmed by a microcontroller
using I2C.

Figure 1 shows the 1S2P system architecture and the connections needed to evaluate the charging of two cells in parallel.

A Guide to Battery Fast
Charging (Part 2)
In Part 2, we’ll explore the implementation details of a fast-charging system with
parallel batteries using evaluation kits and a Raspberry Pi board.

1. This 1S2P charging system evaluation architecture uses Raspberry Pi.

☞LEARN MORE @ electronicdesign.com | 1

https://www.maximintegrated.com/en/products/power/battery-management/MAX17330.html
https://www.maximintegrated.com/en/products/power/switching-regulators/MAX20743.html
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

The Raspberry Pi controls the three evaluation kits: one MAX20743EVKIT (buck converter) and two MAX17330EVKITs
(charger + fuel gauge). Data is logged in an Excel file.

The GUI-based, MAX17330 evaluation kit software is available and can be downloaded from the MAX17330 product
page under the Tools and Simulations tab. It can generate initialization files (.INI) for the MAX17330 using the Configura-
tion Wizard (select from the Device tab). The INI file contains the register initialization information for the device in a regis-
ter address/register value format. This is the file used by the microcontroller to configure the MAX17330 register by register.

The MAX17330EVKIT datasheet details the different steps required to generate the initialization file. The configuration
is used to begin parallel charging (Fig. 2). Next, step charging is enabled (Fig. 3). Figure 4 shows the expected step charging
profile based on the step charging configuration found in Figure 3.

The MAX20734 buck converter is used to increase the voltage applied to the two MAX17330EVKITs when needed. The
MAX20734 buck converter changes the output voltage according to the value of the internal register at address 0x21. The
buck converter can be controlled via 12C; a class in Python has been written to do so.

Finally, as shown in Figure 5, the MAX20743EVKIT output-voltage divider is modified for an output range from 3 to 4.6
V (using the values R6 = 4K7 and R9 = 1K3).

2. Configuring the

MAX17330 for parallel

charging.

4. An expected step charging profile is based on the step charging configuration in Figure 3.

3. Step charging is

enabled.

☞LEARN MORE @ electronicdesign.com | 2

https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/max17330x2evkit.html
https://www.analog.com/en/products/max20734.html
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

From Table 1, we can extract the curve:

where x is the voltage that we want to apply at the output. While this
approach will have a slight error, it’s a good way to estimate the desired
value of the register from the voltage.

Powering Up and Initialization
When the MAX17330 is first connected to a battery, default register

value settings force the IC into a shutdown state. To wake the device,
press the PKWK button. This will short the temporary protection MOS-
FETs and wake up both MAX17330EVKITs in this way.

Next, the Raspberry Pi needs to communicate via I2C with all three
devices. Carefully initialize the I2C hardware to avoid device address
conflicts. By default, the two MAX17330EVKITs use the same I2C ad-
dress. The first step is to change the address of one of the two fuel gauges.

The MAX17330 has both volatile and nonvolatile registers (Table 2),
with nonvolatile registers identified by the “n” prefix. This also results in
a pair of node addresses, 6Ch (volatile registers) and 16h (NV registers).

There are two ways to change device node addresses on the MAX17330:
• Set the nPackCfg NV register using the I2CSid field. This change can

be set using the Configuration Wizard (Table 3).
• The I2CCmd register enables dynamic changes to the I2C bus
 (Table 4).

For ease of use, we use the second way to change the address so that
the same INI file can be employed to initialize both devices. Generating
settings that can be shared by the two devices simplifies device configu-
ration and eliminates the potential for user error when the address must
be entered manually.

Since the two MAX17330 devices share the same I2C bus, this proce-

5. The output-voltage divider has been modified for an output range of 3 to 4.6 V

(with R6 = 4K7 and R9 = 1K3).

☞LEARN MORE @ electronicdesign.com | 3

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

dure requires that the ALRT signal of one device must be set low while the other one is set high.
Table 5, from the MAX17330 datasheet, shows how the I2CCmd register can dynamically change the address of the de-

vice based on the ALERT GPIO pin value. In this case, the GoToSID and INcSID fields are used to change the I2C address:

Once each device has its own unique address, the entire system can be controlled by a single microcontroller.
Here’s the script for the microcontroller to complete I2C configuration; this will be part of the system initialization:

☞LEARN MORE @ electronicdesign.com | 4

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

See Table 6.
Some registers in the nonvolatile space require the firmware to be restarted for the change to take effect. Thus, the follow-

ing step is required:

See Table 7.
Next, we need to enable interrupts from the chargers:

See Table 8.
Now the devices are initialized.

Logging Data and Interrupts
We need to be able to read registers to log data and check if an interrupt has been generated on the ALERT GPIO lines.

We can use this script:

☞LEARN MORE @ electronicdesign.com | 5

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

See Tables 9, 10, and 11.
When ALRT is asserted from the MAX17330, the host will perform the following:

See Tables 12 and 13.
Figure 6 shows the parallel charging plot extracted from the logged data (Excel file). Note how it follows the step charging

profile.

FProtStat Register
Optionally, once the device moves from the constant-current (CC) phase to the constant-voltage (CV) phase, the voltage

generated from the step-down converter can be reduced as follows:

These are all of the steps needed to manage a 1S2P charging configuration. Included in MAX17330-usercode.zip is the
Python code for configuring the buck converter (MAX20743) as well as the charger and fuel gauge (MAX17330). It also
includes the Excel data log to capture important charging parameters and evaluate the step charging profile.

By managing alert signals generated from the MAX17330, a microcontroller keeps the linear charger of the MAX17330
close to dropout, minimizing power dissipation and therefore allowing for high charging current. A battery pack using the
MAX17330 stores the parameters for the installed battery that the host microcontroller needs to implement efficient fast
charging. This allows OEMs to replace a standard charger IC device with a simpler and less expensive buck converter with-
out compromising performance or reliability.

☞LEARN MORE @ electronicdesign.com | 6

https://www.analog.com/media/en/technical-documentation/tech-articles/max17330-user_code.zip
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

Safe, Reliable Charging
Device charging time is one of the most impor-

tant user experience considerations. Using a buck
converter like the MAX17330 makes it possible to
efficiently manage a very high current to decrease
charging time in a small IC package. The ability to
support parallel charging with a very high current,
such as with two MAX17330s, enables developers to
charge multiple batteries in a safe, reliable manner
that keeps charging time to a minimum.

Franco Contadini has over 35 years of experience in
the electronics industry. After 10 years as a board and
ASIC designer, he became a field applications engi-
neer supporting industrial, telecom, and medical cus-
tomers, focusing on power and battery management,
signal chains, cryptographic systems, and microcon-
trollers. Franco has authored several application notes
and articles on signal chains and power. He studied electronics at ITIS of Genoa, Italy.

Alessandro Leonardi is an account manager at Analog Devices, Milan. He studied electronics engineering and received a
bachelor’s and master’s degree from Politecnico di Milano. After graduating, he became part of the field applications trainee
program at ADI.

6. A parallel charging plot.

☞LEARN MORE @ electronicdesign.com | 7

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

