By FRANCO CONTADINI, Staff Engineer, and

EleCt ron I C ALESSANDRO LEONARDI, Account Manager, Field Sales,
8
DQSi gn o Analog Devices Inc.

A Guide to Battery Fast
Charging (Part 2)

In Part 2, we’ll explore the implementation details of a fast-charging system with
parallel batteries using evaluation kits and a Raspberry Pi board.

valuating a simple charging sys- S ATS S0E BT

tem and testing its functional-

ity can typically be done with an >{SYsP p— BATIP I3

evaluation kit. These kits include Fuel Gauge E BATT-B
all of the necessary hardware and soft- |SYSN o BATIN
ware applications, as well as graphical '\
user interface (GUI)-based tools and . LALRT_B
APIs, to configure charging systems. =

MAX20743 EVKIT MAX17330_A EVKIT
However, complex systems that re-
quire multiple cells are correspondingly Vour |15 BANIR—
more difficult to evaluate. Complex sys- 12v————| StepDown ngaégﬁ‘;e E BATT_A
tems may have several devices that must GND »-| SYSN BATTN
. . 1 ALRT
be characterized. Developers will need =
. A A A
to write some software code to read the « ALRT_B
signals generated from different system 12 In—:l
parts, analyze them, and take action. 3
Consider two Li+ cells in a paral- Y \J

lel battery fast-charging system using SDA1-SCL1 GPI027 GPI024
the MAX17330. As described in the G e b R
datasheet, the MAX17330 can be used e
to charge and control two Li+ cells si-
multaneously. This system requires two =

MAX17330 ICs, each managing one

Li+ cell, and a buck converter (such as 1. This 1S2P charging system evaluation architecture uses Raspberry Pi.
the MAX20743) with the capability to

change its output voltage on-the-fly.

A microcontroller is required to configure and manage battery charging as well as handle communication between the
two ICs. Because it's a commonly used platform for system testing, we chose a Raspberry Pi board using Python as the
programming language. The Raspberry Pi manages communications over I?C and logs important system parameters useful
for evaluation and debugging, including charge current, battery voltage, and battery state of charge (SOC). These values are
stored in an Excel file to enable offline analysis.

Testing the 1S2P Architecture

This section shows how the charger and fuel gauge (MAX17330) are tested. It also describes the real performance that
can be expected from parallel charging. For the most flexibility and control, the device is programmed by a microcontroller
using I2C.

Figure 1 shows the 1S2P system architecture and the connections needed to evaluate the charging of two cells in parallel.

05" LEARN MORE @ electronicdesign.com | 1

https://www.maximintegrated.com/en/products/power/battery-management/MAX17330.html
https://www.maximintegrated.com/en/products/power/switching-regulators/MAX20743.html
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

The Raspberry Pi controls the three evaluation kits: one MAX20743EVKIT (buck converter) and two MAX17330EVKITs
(charger + fuel gauge). Data is logged in an Excel file.

The GUI-based, MAX17330 evaluation kit software is available and can be downloaded from the MAX17330 product
page under the Tools and Simulations tab. It can generate initialization files (.INI) for the MAX17330 using the Configura-
tion Wizard (select from the Device tab). The INI file contains the register initialization information for the device in a regis-
ter address/register value format. This is the file used by the microcontroller to configure the MAX17330 register by register.

The MAX17330EVKIT datasheet details the different steps required to generate the initialization file. The configuration
is used to begin parallel charging (Fig. 2). Next, step charging is enabled (Fig. 3). Figure 4 shows the expected step charging
profile based on the step charging configuration found in Figure 3.

The MAX20734 buck converter is used to increase the voltage applied to the two MAX17330EVKITs when needed. The
MAX20734 buck converter changes the output voltage according to the value of the internal register at address 0x21. The
buck converter can be controlled via 12C; a class in Python has been written to do so.

Finally, as shown in Figure 5, the MAX20743EVKIT output-voltage divider is modified for an output range from 3 to 4.6
V (using the values R6 = 4K7 and R9 = 1K3).

Step &/ 20: Additional Protection Configuration : i
e ¥ Enable JEITA Charging 2. Configuring the
nable Permaner ailure Faul
Enable FET Failure Detection Enable JEITA Protection MAX17330 for parallel
Permanent Failure Debounce Timer | 14810285 ~ & Enabie Protaction charging.

' Verify Permanent Failure Status Before Programming (Frogramming cannot be successful if Permanent Failure triggered)
~/'Enable Parallel Charging Feature
) £nable FETs Off Override by ALRT Pin
Enable FETs Off-Ovemide by 12C Command

Enable Protector Checksum

The ALRT signal is used to open the path between the
charge source and battery, and parallel charging is enabled

Step 4 / 20: Step-Charging Configuration L
3. Step charging is

Disable Step-Charging enabled.
Charge Step 0 StepVoltd (V) 412 v Room Charging Current 500 mA
Charge Step 1 StepVoit1 (V) 416 v StepCurr1 (mA) 406.25
Charge Step 2 Room Charging Voltage: 4.2V StepCurr2 (mA) 281.25

4.20 Full Voltage
4.6V STEPVOLT1
4.12V STEPVOLTO

500 mA STEPCURRO

Current
406mA STEPCURRT | === =—mmmmm e e e e e e

VeeLL

281mA STEPCURR2 | fFmmmm e e e e e -

D e e

ICHGTERM == oo oo LTS -
IPREQUAL ——F 7% = = = = — o o e e o e -

-
-1

Highest Current, Medium Current Reduced Current Time
Lowest Voltage Until Full

4. An expected step charging profile is based on the step charging configuration in Figure 3.

05" LEARN MORE @ electronicdesign.com | 2

https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/max17330x2evkit.html
https://www.analog.com/en/products/max20734.html
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

VX1 GND2

Lco L 51 Lc3s
10 pF 10 uF 10 pF - -
X5R X5R X5R
= 0402 = 0402 = 0402 =
o o
5 8 =
L R10
Vee e 7 ul Sf’zz pF 1k
RS 0402 20kQ = X7R 0402
) STAT S § g psT 0402
R8 0402 20k0 > BST — L1
OE PGMA 4 fpgMa x (L YX ~
c32 SMALERT 3 170 nH
1000 pF S SHALERL | R12 c37
ID‘&DZ =B D lpeMB 2 DoNotStuff Do Not Stuff
1 0402 0402
= STAT 13 | gra7 MAX20743 " SENSE_Voyr
LAY
OE 1]
DATA 14 |p,mn VSENSEs | 1_VSENSE+
3.3V CLK 12 2 VSENSE- c39 R6
= ok _ VSENSE- [————> == Do Not Stuff 3 1.87k0
| RIS 0402 Do Not Stuff z a 0402 0402
2 &
©
PGMA PGMB SMALERT <> Diff Pair
LR1 c4 |R2 c23 LR3 c31 =
21.78 k() =< Do Not Stuff$ 162 k() =< Do Not Stuff 3 Do Not Stuff =<Do Not Stuff R4
10402 | 0402 0402 | 0402 0402 0402 s SﬁN t Stuff
< 0 Nof u
00402 3 0905
PMBus® Addr =1010 000b Rgay = 0.9 m-0
Tss=3ms Valley OCP=35A RS
Vpoor = 0.6484 V Fsw = 400 kHz 33.48k0
0402 | c3g
T~ Do Not Stuff
0402

5. The output-voltage divider has been modified for an output range of 3 to 4.6 V

(with R6 = 4K7 and R9 = 1K3). Table 1: Conversion Output Voltage

Based on Register 0x21 for the MAX20743

o2 Rgeer v

From Table 1, we can extract the curve:

Ox014E 3V

x_3 0x0150 305V

Register =0 x 0l4e +(m) %0158 3V

where x is the voltage that we want to apply at the output. While this Zz:z 3;;:

approach will have a slight error, it's a good way to estimate the desired ;o 335V
value of the register from the voltage. OXO1GE 33y

0x0172 335V

Powering Up and Initialization 00178 34V

When the MAX17330 is first connected to a battery, default register gui7c 345V
value settings force the IC into a shutdown state. To wake the device, mis2 35V

press the PKWK button. This will short the temporary protection MOS- oxo18s 355V
FETs and wake up both MAX17330EVKITs in this way. 0x018E 36V

Next, the Raspberry Pi needs to communicate via I>C with all three oxo122 365V
devices. Carefully initialize the I?°C hardware to avoid device address 0x019E 3TV

conflicts. By default, the two MAX17330EVKITs use the same I2C ad- ox0144 375V
dress. The first step is to change the address of one of the two fuel gauges. ~ 0x01A3 38V

The MAX17330 has both volatile and nonvolatile registers (Table 2), UAE 385V
with nonvolatile registers identified by the “n” prefix. This also results in ~ <0184 e

a pair of node addresses, 6Ch (volatile registers) and 16h (NV registers). ~ #0184 395V
There are two ways to change device node addresses on the MAX17330: ~ 0018F Y

« Set the nPackCfg NV register using the I?CSid field. This change can ~ ®®1¢# a5V
be set using the Configuration Wizard (Table 3). Ox01cE v

« The I)CCmd register enables dynamic changes to the I?C bus (1D sV
(Table 4). 0x01D6 a2v

0x01DC 425V

For ease of use, we use the second way to change the address so that Z:Ei ::S\L

the same INI file can be employed to initialize both devices. Generating :

.) L) OX01ED a4v
settings that can be shared by the two devices simplifies device configu- 01E3 oy
ration and eliminates the potential for user error when the address must Ox01FE a5y
be entered manually. P ey

Since the two MAX17330 devices share the same I2C bus, this proce- e e

05" LEARN MORE @ electronicdesign.com | 3

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

Table 2: MAX 17330 Registers

Register Lock 2-Wire Mode 2-Wire Protocol 2-\ire External
Page Address Address Range

Modelgauge M5 EZ data block 8 channels i 00h—4Fu
01h-04h Lock2
05 h — 04k Resarved
0 Bh Lock 2 Maodelgauge MS EZ data block (continued) & channels S o3 BO h — Beha
0Ch SHA SHA memory & channels FC COh — CFh
0 Dh Lock 2 Maodelgauge MS EZ data block (continued) & channels S o3 D0h — Defy
0 Eh -0 Fh Resarved
10 h-17Th SBS data block 18 channels 5B5 00 h -7 Fh

18h-18h Lock3 Modelgauge ME EZ nonvolatile memory block

1Ah-1Bh Lock 1 Life logging and configurstion nonvaolatile 18 channels G &0 h — Fehr
memory block
1 Ch Lock 4 Configuration nonwvolatile memory block

Table 3: nPackCfg (1B5h) Register Format

COE N T) N S S S N R S

5_Hib THType

lable 4: FCCmd (12Bh) Register Format

e e [ee] mmm-mm---nm

GoToSID IncSIC

dure requires that the ALRT signal of one device must be set low while the other one is set high.
Table 5, from the MAX17330 datasheet, shows how the I2CCmd register can dynamically change the address of the de-
vice based on the ALERT GPIO pin value. In this case, the GoToSID and INcSID fields are used to change the I2C address:

Set ALRT_A logic low

Set ALRT_B logic high

Write 12CCmd = 0 x 0001 = MAX17330_A address remains at 6Ch/16h
= MAX17330_B address set to ECh/96h

Once each device has its own unique address, the entire system can be controlled by a single microcontroller.
Here’s the script for the microcontroller to complete I2C configuration; this will be part of the system initialization:

Load .INI file
Assert ALRT_A and ALRT_B to keep the path between SYSP and BATTFP open
Read Vearr_A and Vearr B

Viax = max (Vearr A, Vearr_B)

Set Vour = Vmex + 50 mV
Release ALRT A and ALRT B
Set nProtCfg . OvrdEn = 0 to use ALRT as Output

Table 5: PC ALRT Settings

Garesio ST T

Primary/Secondary Address Primary/Secondary Address

000 ECh/BGh 6Ch/16h
001 B4hMEh ECh/3Sh
010 E4h/aEh g4hi1Eh
0011 BCh16h E4h'B8Eh

05" LEARN MORE @ electronicdesign.com | 4

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

Table 6: nProtCfg (1D7h) Register Format

s oe [oo | o | o | oo | w | w

ChgWDOTEn nChgAutoCtd FullEn S5CTest CmCwrdEn ChgTestEn PrequslEn
Reserved FFEn DieepShpEn FetFFEn BlockDisCEn DeepShpZEn
See Table 6.

Some registers in the nonvolatile space require the firmware to be restarted for the change to take effect. Thus, the follow-
ing step is required:

Assert Config2. POR_CMD to restart firmware

Table 7: Config2 (OABh) Register Format

N T T T T N

FPOR_CMD
oo | o | o | o [o | o2 | o [o |
dS0Cen TAIER a 1 DRCfg CPMode BlockDis
See Table 7.

Next, we need to enable interrupts from the chargers:
Set (Config.Aen and Config Caen) =1

Table 8: Config (O0Bh) Register Format

B T T AT T

DisBlockRead thﬁulnD’lrI

SHIF COMMEH FastADCen

See Table 8.
Now the devices are initialized.

Logging Data and Interrupts
We need to be able to read registers to log data and check if an interrupt has been generated on the ALERT GPIO lines.
We can use this script:

Set 500 ms Timer
WV = min (Vearr A, Vearr B)
Vays min = nVEmpty[15:7]
CrossCharge = False
If (Wmi=Vsys_min) 2 CrossCharge = True
Evaluate if the minimum battery voltage exceeds the minimum operating voltage of the system
If FProtStat IsDis = 0
Charging signal is detected
Clear Status AllowChgB
Indicate charger presence to all batteries
If (Veart = Vi + 400 mV and I1Cross Charge)
Determine which battery to block to avoid cross-charging
Config2 BlockDis = 1
else
Config2 BlockDis =0
Allow discharging if the low battery is much lower than the high battery

05" LEARN MORE @ electronicdesign.com | 5

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

Table 9: FProt5tat (0DAh) Register Format

-mm-mm-m-mm

IsDis Haot Caold Warmm

Table 10: Status (000h) Register Format

mmmmmmnmﬂmmmm-

W CA Snin Tmin ‘i Im=z AllowChgE X

Table 11: Config2 (DABh) Register Format

N N N ST T N

POR_CMD
d50Cen TAIEn CPMede BlockDis

See Tables 9, 10, and 11.
When ALRT is asserted from the MAX17330, the host will perform the following:

Read Status register data
If Status.CA is set
Read ChgStat register
If ChgStat Dropout = 1 =2 increase Vour
If (ChgStat. CP or ChgStat. CT) = 1 2 decrease Vour
Clear Status. CA

Table 12: Status Register (000h) Format

mmmmnmmmmmm-

W CA Srnin Tmin ‘fimin Iz AllowChgB X

Table 13: ChgStat (0A3h) Register Format

m-mm-mm-mmnm

Dmp-nut

See Tables 12 and 13.
Figure 6 shows the parallel charging plot extracted from the logged data (Excel file). Note how it follows the step charging
profile.

FProtStat Register
Optionally, once the device moves from the constant-current (CC) phase to the constant-voltage (CV) phase, the voltage
generated from the step-down converter can be reduced as follows:

If Vearr = ChargingVoltage
Read ChgStat Register
If ChgStat.CV = 1 2decrease Vour until Veck = ChargingVoltage + 25 mV

These are all of the steps needed to manage a 1S2P charging configuration. Included in MAX17330-usercode.zip is the
Python code for configuring the buck converter (MAX20743) as well as the charger and fuel gauge (MAX17330). It also
includes the Excel data log to capture important charging parameters and evaluate the step charging profile.

By managing alert signals generated from the MAX17330, a microcontroller keeps the linear charger of the MAX17330
close to dropout, minimizing power dissipation and therefore allowing for high charging current. A battery pack using the
MAX17330 stores the parameters for the installed battery that the host microcontroller needs to implement efficient fast
charging. This allows OEMs to replace a standard charger IC device with a simpler and less expensive buck converter with-
out compromising performance or reliability.

05" LEARN MORE @ electronicdesign.com | 6

https://www.analog.com/media/en/technical-documentation/tech-articles/max17330-user_code.zip
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

lvs.V

Safe, Reliable Charging 3 700
Device charging time is one of the most impor-
tant user experience considerations. Using a buck 0
converter like the MAX17330 makes it possible to 500
efficiently manage a very high current to decrease
charging time in a small IC package. The ability to 400
support parallel charging with a very high current,
such as with two MAX17330s, enables developers to 300
charge multiple batteries in a safe, reliable manner
that keeps charging time to a minimum. 200
38 —— VCELL-1
Franco Contadini has over 35 years of experience in _ zz(l:_:lﬁ_]_z 100
the electronics industry. After 10 years as a board and 3.7 — Vpek-2 0
ASIC designer, he became a field applications engi- —ICELL_1
neer supporting industrial, telecom, and medical cus- 3.8 ICELL2 -100
1 1000 2000 3000 4000 5000 5538

tomers, focusing on power and battery management,
signal chains, cryptographic systems, and microcon- 6. A parallel charging plot.
trollers. Franco has authored several application notes
and articles on signal chains and power. He studied electronics at ITIS of Genoa, Italy.

Alessandro Leonardi is an account manager at Analog Devices, Milan. He studied electronics engineering and received a
bachelor’s and master’s degree from Politecnico di Milano. After graduating, he became part of the field applications trainee
program at ADL

05" LEARN MORE @ electronicdesign.com | 7

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

