
By JAMES WILSON, VP & General Manager, Skyworks

I
n our last article, we provided an overview of the design
considerations when developing a reliable timing system.
Notably, this revolved around the crucial decision made
between selecting crystal oscillators and clock generators.

Now we’ll dig into this discussion deeper, exploring clock
trees, jitter budgets, and how to select a clock generator for
a given design.

Modern applications are built around high-bandwidth,
multicore processors, and field-programmable gate arrays
(FPGAs), which often have stringent timing requirements
and jitter budgets. Given the frequency diversity of these
applications, the choice between an oscillator and an
integrated clock becomes much more straightforward.

Oscillators and Clock Generators
An oscillator is able to generate one reference frequency

for a single device. If an application has modest timing
requirements, one or two oscillators can be used in the
design. For applications that require a greater number of
frequencies or clocks, it may be prohibitive to use crystal
oscillators due to cost, PCB layout complexity, or reliability,
since each oscillator represents a potential point of failure
in the system.

A better approach for these applications is to use a
clock device that consolidates multiple oscillators into a
solid-state integrated-circuit (IC) solution. This simplified
solution offers additional benefits for the designer, including
improved reliability, the ability to switch clock frequencies

if system requirements change,
simplified procurement,
and more. Thus, integrated
clock generators emerge
as the primary solution for
more complex systems and
applications.

Knowing the timing
requirements and jitter
budgets for FPGAs, ASICs,
and systems-on-chip (SoCs)
is what enables us to make the
initial decision between an
oscillator or a clock generator.
Beyond that, it allows us to
take it a step further and
decide which clock generator
is right for a given application.

Timing Decisions 102:
Optimize Your Clock Tree
A fundamental look into the clock tree helps engineers gain a better understanding of
the timing requirements and associated jitter budgets when designing timing systems.

1. Formatting the collected infor-

mation into a simple clock table

helps to ensure that all system

requirements are captured.

☞LEARN MORE @ electronicdesign.com | 1

To take this next step, we need a way to define
this information. Enter the clock tree and its
jitter budget.

What’s a Clock Tree?
The clock tree, a hardware design’s clock-

distribution network, includes the clocking circuitry
and devices needed for frequency synthesis and clock
distribution between the clock source and each individual
IC. Typically, a single reference clock will drive multiple
clock paths, much in the same way a tree has multiple
branches connected to a common trunk.

To optimize the clock tree for a given application,
hardware designers need to understand the requirements
associated with each individual IC. Each FPGA, ASIC,
and SoC datasheet typically lists the frequency, clock
signal format, voltage level, and applicable maximum jitter
associated with each reference clock. The same information
may be similarly provided in a reference block diagram in
the SoC datasheet.

Formatting the collected information into a single
reference table (Fig. 1) is an essential step to ensure all
system requirements are captured.

The next step in the process is to select the timing ICs
that provide clock generation and clock distribution. These
devices must meet the design’s specific needs and provide
sufficient margin to critical jitter budgets to help ensure
first-pass success.

The detailed jitter requirements from the clock tree opens
the door to a larger conversation around jitter and the
budget for the entire system.

Defining the Clock-Tree Jitter Budget
Jitter is the key figure of merit for timing performance,

and more specifically, the variation in the accuracy of a clock
period. In high-speed communications systems, it’s critical
to manage jitter carefully to prevent degradation in the data
transmission’s bit-error rate. Physical-layer transceivers in
FPGA/ASIC/SoCs, used to carry serial data between two
devices, will typically specify the maximum allowable jitter
the transceiver reference clock can tolerate before it violates
system performance. Maximum jitter is a specification that
comprehensively includes variation over process, voltage,
temperature, and other operating conditions, and includes
support for any applicable industry standards.

A common rule of thumb is to optimize the clock-tree
design for the most jitter-sensitive reference clocks first by
selecting clock generators that generate these frequencies
using a high-performance phase-locked loop (PLL) and
integer dividers. It’s important to compare the clock
generator’s maximum jitter specification versus the reference
clock requirement to ensure there is sufficient safety margin.

Avoid clocking devices that specify typical jitter and
don’t guarantee maximum jitter since they may suffer from
higher variability over process, voltage, temperature, and/
or frequency configuration. Using a high-performance
PLL with integer dividers ensures the system’s most critical
clocks have excellent phase noise and low spurious content.

Unrelated and Multiple Single Frequencies
Second, the system may require frequencies that are

entirely unrelated to each other. After deciding which
clocking device will be used to generate the most jitter-
sensitive clocks, the next step is to determine how to
generate the rest of the system frequencies.

Today, programmable clock generators are available from
multiple suppliers that support integrated fractional dividers,
which can be used to synthesize unrelated clock frequencies.
Fractional dividers provide frequency flexibility, but the
tradeoff is higher jitter generation. The ideal selection is a
clock generator device that can synthesize the most jitter-
sensitive integer clocks while simultaneously generating
fractional, unrelated clocks with sufficient margin to FPGA/
ASIC/SoC reference clock requirements.

Some systems require multiple copies of a single
frequency. In these applications, a clock buffer can be used
to provide the distribution of a clock from an oscillator or
clock generator IC.

For clock buffers, the key figure of merit is additive jitter,
which typically impacts the wideband noise of the clock.
Additive jitter represents the amount of jitter, or clock noise,
that’s added to a clock signal as it’s distributed. If a clock
buffer is used to fan out a clock from a clock generator IC,
it’s critically important to ensure the combined clock signal
provides sufficient margin to the downstream FPGA/ASIC/
SoC’s reference clock requirement.

Clock trees typically use clock generators or oscillators for
frequency synthesis, and clock buffers as follow-on devices
for clock distribution. A root-sum-square (RSS) equation
(Fig. 2) can be used to estimate the total jitter through the
frequency synthesis and clock-distribution devices. This
estimate can then be compared against the FPGA/SoC’s
maximum jitter specification to ensure sufficient headroom
is available.

Considering the Timing Design
Understanding the clock tree itself, in addition to the

total clock-tree jitter, gives a system designer the ability to

2. RSS equations can be used to estimate the total jitter through the frequency syn-

thesis and clock-distribution devices.

☞LEARN MORE @ electronicdesign.com | 2

allocate the timing system accordingly. It also helps ensure
the frequency synthesis and clock-distribution devices
have sufficient margin versus maximum system-level jitter
requirements.

Outside of this, certain aspects of hardware design are
subject to change prior to completion, and these factors
may impact the clock tree’s frequencies and signal formats.
Changes in the design due to component selection or
architectural changes to the physical-layer or control
plane design may dictate the need for clocks with different
frequencies or signal formats.

In addition, FPGAs are highly reconfigurable. If the
required FPGA feature set changes considerably based on
market and application requirements, it may necessitate
a hardware change that impacts the clock tree. For these
reasons, it’s advantageous to use a device capable of
supporting any frequency synthesis and built-in signal
format translation.

Clock generators that can generate any frequency on
any output, while simultaneously offering signal format
translation, are often the best choice. One key function
that a clock generator can’t provide is jitter cleaning. When
jitter cleaning is needed within the timing system, a jitter
attenuator can be used in lieu of a clock generator within
the clock tree. Vendors now offer solutions that provide
clock generation and jitter attenuation in a common PCB
footprint, easing the transition if a jitter attenuator is
required.

As high-speed applications continue to push data
bandwidth limits skyward, applications require an
increasingly diverse mix of frequencies with ever-tighter
jitter budgets. Designing a reliable clock tree is becoming
more crucial than ever. By considering the different
requirements tied to the clock tree as a whole, it makes it
possible to choose the best solution for each application.

☞LEARN MORE @ electronicdesign.com | 3

