
By DANIEL EHRHARDT, AI Software Engineer,
Recogni, www.recogni.com

T
his article presents three tips that can help you sig-
nificantly improve the performance of convolutional
neural network (CNN) architectures for inference
tasks. These tips are based on Recogni’s experience

in successfully converting numerous neural networks (NNs)
that have been trained on tasks ranging from simple image
classification to more sophisticated challenges including
semantic segmentation and 2D and 3D object detection.
There’s real-world experience behind these tips.

Image classification is a computer vision application that
uses a NN to recognize objects in a picture or a video frame
by extracting and recognizing features in the image. A NN
applied to semantic image segmentation
attempts to label each pixel of an image
with a corresponding object class.

Object detection goes even further
and requires even more computing
power to draw bounding boxes around
the objects, which means predicting
their position in the image and size.
It’s an essential technology needed to
enable autonomous vehicles (AVs), in-
forming the vehicle about its surround-
ings from cars and bicycles to traffic
signs and lights and road lane markings.

Training Neural Networks
Typically, NNs are trained using a

cluster of servers bolstered by gener-
al-purpose graphics processing units
(GPGPUs). For accuracy, NN training
almost universally relies on floating-
point number representations for the

NN’s weights and activations. Due to the use of floating-
point representations and the sheer number of computa-
tions needed, NN training requires an immense amount of
computing power.

If that type of compute was trivially used during infer-
ence in embedded and edge applications, it would be pro-
hibitively power-hungry—especially for battery-powered
mobile applications such as AVs. Thus, care must be taken
to reframe the inference problem in ways that reduce the
amount of computation needed while maintaining the re-
quired accuracy.

One of Recogni’s semantic segmentation CNNs that was

Three Tips for Boosting
CNN Inference
Performance
Large performance gains with minimal changes in result are possible by optimizing
convolutional neural network models.

1. A semantic segmentation CNN developed using the three performance tips in this article

produces results that are extremely close to ground truth. Differences between the CNN’s

predictions and ground truth appear in color and matches appear black. The differences are

minuscule.

☞LEARN MORE @ electronicdesign.com | 1

http://www.recogni.com
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

trained on the A2D2 dataset—a driving dataset of video pub-
lished by Audi—achieved a mean intersection over union
(IoU) score of 83.78%. It even surpassed the original paper’s
reference performance after having been compressed and
quantized to Recogni’s proprietary mathematical systems.

The IoU score specifies the amount of overlap between the
predicted and ground-truth bounding boxes. It’s the ratio
of the intersection (the overlap) of the predicted bounding
boxes and the ground-truth (actual) bounding boxes divid-
ed by the union of these two boxes.

If the prediction is perfect, the score is 100%. If the pre-
diction is so poor that the predicted bounding boxes don’t
overlap the ground-truth bounding boxes at all, the score is
zero. Semantic segmentation is used in AD/ADAS for vari-
ous applications such as classifying the road into drivable
and non-drivable segments or identifying parking spots and
sidewalks.

A single numeric score can often fail to capture all of the
details required to judge CNN performance and the IoU
metric is no exception. Figure 1 subtracts the pixel-value
predictions of the original CNN with the predictions of a
converted network for a single sample of the dataset. Dif-
ferences between the CNN’s predictions and ground truth
appear in color and matches appear black.

Figure 1 shows that the converted CNN reproduces the
original predictions almost perfectly, because almost all pix-
els in it are black. The differences between ground truth and
prediction are minuscule.

3D Object Detection
3D object detection (3DOD) as a task that AVs need to

perform is among the most challenging to convert, given its
highly regressional nature (meaning not just classifying ob-
jects or pixels, but gradually inferring the size, distance, or
orientation of objects).

Recogni’s Stereo 3DOD pipeline has a traditional deep
neural network (DNN) backbone and multiple detection
heads to estimate object depth from left and right image
pairs and then casts the network’s predictions as 3D bound-
ing boxes located in space. These 3D bounding-box predic-
tions are evaluated based on their position, dimensions, ro-
tation, and classification against ground-truth values.

Precise estimation of all these parameters is essential and
this estimation often requires specialized strategies when
using low-precision number representations for inference.
Solving the challenges of converting a 3DOD network and
deploying it on our inference chip using reduced-precision
weights and activations enabled Recogni to fine-tune its ap-
proaches to various aspects of the conversion problem.

The results of this conversion appear in Figure 2. The top
half of the figure shows a scene overlaid with 3D bounding
boxes generated by the network running at 32-bit floating-
point precision. The bottom half of the figure shows the 3D
bounding boxes predicted by the Recogni 3DOD pipeline
after optimization of the weights and activations using the
three tips described in this article. The differences between
the ground-truth and predicted bounding boxes aren’t vis-
ible to the human eye, hence indicating a level of perfor-

2. The top half of the figure shows a scene overlaid with 3D bounding boxes generated by the network running at 32-bit floating-point precision.

The bottom half of the figure shows the 3D bounding boxes predicted by the Recogni 3DOD pipeline after optimization of the weights and acti-

vations using the three tips described in this article. Again, the differences between the ground-truth and predicted bounding boxes are minor.

☞LEARN MORE @ electronicdesign.com | 2

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

mance that’s essential for AV applications.
The resulting model conversion strategies outlined in the

following section can handle complex problems and are
well-suited to many NN applications. The three tips dis-
cussed will help you strike a balance between compression
rate and high accuracy.

Improve Neural-Network Efficiency via Model
Conversion

Reducing the over-parameterization of the network by
compressing its weights is a key pillar for inference deploy-
ment. For example, the weights of the 3DOD network pre-
sented earlier have been compressed from 240 MB to ap-
proximately 8.2 MB—a 29x compression ratio that makes
it possible to store all of the weights on the same chip along
with the computational machinery implementing the NN.

Most state-of-the-art NN architectures contain inefficien-
cies that can be optimized for inference deployment, includ-
ing the elimination of over-parameterization, reducing the
precision of overly precise computations, and removing un-
necessary calculations. Recogni’s chip is designed from the
ground up to reduce the computational load of NN infer-
ence by exploiting all these inefficiencies.

Co-designing the hardware and the NN algorithm makes
it possible to find the best tradeoff between accuracy, com-
pute, memory, and power consumption by using batch
norm folding, Cluster Compression techniques, and re-

duced-precision number representations. Figure 3 illustrates
the conversion process, and the following sections explain
each conversion step in more detail.

Batch Norm Folding (BNF)
DNNs often contain operations such as batch normaliza-

tion layers that aren’t needed for inference tasks in deployed
equipment. Implementing these batch normalization layers
in hardware is expensive, especially when using floating-
point precision, and it’s not needed.

You can eliminate batch normalization layers during the
conversion process by folding their scale and shifting pa-
rameters into the preceding layer’s weights. This procedure
is called batch norm folding (BNF) and has become a stan-
dard procedure when using deployed NNs for inference.

Cluster Compression (CC)
State-of-the-art DNN architectures require huge amounts

of computing resources and memory for inferencing. Spe-
cialized NN accelerators used for inferencing must provide
sufficient computing resources and feed them at high band-
widths to meet performance and latency requirements.

In many systems, it’s memory—not computing capacity—
that becomes the main bottleneck with respect to through-
put and energy consumption. Specifically, accessing data in
off-chip memory such as DRAM is extremely costly from
both time and power-consumption perspectives. The closer
that weights and activations can be brought to the comput-
ing resources, the better.

One effective way to reduce off-chip memory accesses is
to compress weights so that they can all be stored on the ac-
celerator chip itself. Many upcoming inferencing chips use
compressed number formats such as FP8 (an 8-bit floating-
point format) to reduce the amount of memory needed to
store weights and activations. Reduced number formats are
discussed in more depth in the next section of this article.

DNNs are known to be over-parameterized in general,
so there’s lots of opportunity to improve compression be-
yond shrinking the fundamental data type. For example, it’s
well known that the number of neural-network parameters
can be significantly reduced by pruning channels or further
compressing the weights with only a minor loss in model
accuracy.

Recogni’s perception accelerator technology reduces
DNN memory requirements even further by using a propri-
etary compression scheme that stores compressed weights
using a technique called Cluster Compression (CC).1 Start-
ing from a pre-trained model, CC extracts representative
weight kernel centroids. Each centroid replaces the cor-
responding kernels of the same cluster (Fig. 4), and then
indexed representations are stored instead of saving whole
kernels. Kernels in the same cluster share weights, which

3. Effective inference conversion combines batch norm folding (BNF),

neural-network Cluster Compression (CC) techniques, and reduced-

precision numeric representation including Recogni’s custom loga-

rithmic number system (LNS).

☞LEARN MORE @ electronicdesign.com | 3

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

provides significant additional compression.
After the initial clustering, the centroids can be further

adjusted to improve accuracy by using standard back-prop-
agation techniques. This additional layer of compression
can make it possible to fit all required weights into on-chip
memory, significantly reducing data movement and energy
consumption.

Compressed Number System
This article has already discussed the use of compressed

number systems such as FP8 to reduce memory storage re-
quirements and cut power consumption. A recent whitepa-
per by Arm, Intel, and NVIDIA proposes a pair of standard-
ized FP8 formats.2 It shows that these reduced-precision
formats can deliver comparable accuracy to 16-bit precision
across a wide array of use cases, architectures, and networks
while cutting storage requirements in half or into one quar-
ter, compared to the 32-bit floating-point number system
that’s mostly used for training and evaluation of CNNs.

However, it’s possible to take this idea even further to
minimize the storage requirement of using a compressed
number system. Most operations employed in modern
DNNs, including convolutions, can be decomposed into
mathematical primitives such as additions and multiplica-
tions.

Multiplications are expensive in terms of both hardware
(die area on silicon) and power consumption, particularly
for high-precision number formats such as 32-bit floating-
point. The required chip area grows roughly quadratically
with the bit size of the number format, so format compres-
sion is quite important when reducing the cost of inference.

Recogni’s perception chip uses a logarithmic number sys-
tem (LNS), which is an optimized FP8 variant long before
the industry started picking it up as an improved evolution-
ary successor to the predominant INT8 number system.

The chip uses approximate math specifically tailored to
NNs, which replaces costly multiplications in the linear do-
main with much simpler additions in the logarithmic do-

main. The same principle can be applied to convolutions.
However, some calculations must still be done in the linear
number domain rather than the logarithmic domain, so the
Recogni perception chip has specialized hardware to con-
vert between both domains.

Meeting Next-Gen Inferencing Demands for AVs
Reducing floating-point weights and activations to small-

er number formats for inferencing applications is a com-
monly used method that allows NN developers to reduce
storage and power-consumption requirements in inferenc-
ing applications.

However, it’s possible to go much further with careful de-
sign of the inferencing hardware by designing the conver-
sion to a compressed number format natively into silicon.
This unlocks compute efficiencies of well over 15 TOPS/W
in real applications, a common measurement unit to de-
scribe the efficiency of a chip design.

These steps for reducing computing, memory, and band-
width requirements will be increasingly essential to meeting
the demanding needs of next-generation inferencing appli-
cations for AVs.

References
1. S. Son, S. Nah, and K. M. Lee, “Clustering convolution-

al kernels to compress deep neural networks,” Proceedings
of the European conference on computer vision (ECCV),
2018, pp. 216-232.

2. Paulius Micikevicius, Dusan Stosic, Neil Burgess, et al,
“FP8 Formats for Deep Learning,” arXiv:2209.05433

4. Cluster Compression uses

the k-means algorithm to cre-

ate a compressed represen-

tation of each weight tensor.

These weights can be stored

in a lookup table, using just a

pointer to index into the table.

☞LEARN MORE @ electronicdesign.com | 4

https://arxiv.org/abs/2209.05433
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

