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3
D object detection (3DOD) is central to real-
world vision systems and a critical component 
in the development of perception capabilities for 
autonomous vehicles (AVs) and mobile autono-

mous robots. Real-time 3DOD performed at the frame 
rates required by AVs presents a very difficult engineering 
problem, though, because it demands significant computing 
resources from resource-constrained systems. Constraints 
in AVs include cost, size, power consumption, performance, 
and accuracy. 

While developing 3DOD capabilities for Recogni’s 
machine-learning (ML) perception chip—an embedded 
inference engine designed specifically for vehicles and ro-
bots—the engineering team developed a software architec-
ture based on inputs from a high-resolution, high-dynamic-
range (HDR), high-frame-rate stereo camera pair that meets 
the unique constraints and requirements for AV-based sys-
tems while delivering excellent accuracy. 

Recogni’s end goal is to develop highly accurate, AI-based 
perception for AVs. The company’s experience in develop-
ing an architecture to reach this goal illustrates the signifi-
cant differences between conventional and general-purpose 
versus purpose-built approaches that yield high throughput, 
low latency, and low power implementation.

One key decision that drove the architectural design for 
the ML perception system was to use a stereo pair of high-
resolution video cameras as the sole inputs for the system. 
Although 3D LiDAR sensors are frequently paired with 
stereo cameras to implement perception systems, LiDAR 
sensors remain expensive. Thus, implementing machine 
perception with the required performance and accuracy 
using only a high-resolution stereo camera pair can deliver 
significant cost savings.

Picking a 3DOD Approach
Recogni’s team evaluated several approaches for stereo 

3DOD and ultimately developed their own approach for 
high accuracy and throughput  as a single-shot stereo 3D 
detection network. The left and right image streams from 
a stereo video camera pair provide the only inputs to the 
architecture. 

The system operates directly on distorted and non-rec-
tified images (DNR), which drastically reduces system la-
tency by eliminating the need for a separate hardware warp-
ing unit. By working on DNR data, the computational load 
shifts to the convolutional accelerator. Although this design 
increases the accelerator’s overall computational load, suffi-
cient resources in the accelerator are available to handle the 
load, so the design remains feasible.

The perception model passes both the left and right im-
age through a shared-weights multiresolution-FPN (feature 
pyramid network), with a ResNet32 as a backbone. The re-
sulting pairs of left and right multiresolution feature maps 
are then combined in so-called disparity cost volumes, ef-
fectively embedding the concept of depth/disparity into the 
neural network’s architecture itself. 

You can think about generating cost volumes as the pro-
cess of overlaying the left and right camera images, then 
shifting the right image to the left one column at a time until 
the images overlay. The number of shift operations needed 
to align the left and right images is then used to infer depth 
information. 

We then create 3D bounding boxes and classify objects 
using the output of these multiple cost volumes and subse-
quent detection heads. Once bounding boxes are accurately 
predicted around objects and the objects are classified, the 
ML perception task is complete.

Developing Advanced 
3D Object Detection for 
Autonomous Vehicles
Real-world vision systems rely on 3D object detection, which is critical in developing 
perception capabilities for AVs and mobile autonomous robots. But what’s the best 
approach to achieve the best quality data for the most accurate detection?
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High-Resolution, High-Frame-Rate Video Streamlines 
3DOD

High-resolution HDR video at high frame rates is cen-
tral to making this architecture practical and effective. 
Fortunately, the advent of cellphones has made low-cost, 
high-resolution, HDR video sensors readily available from 
several vendors, including Omnivision, onsemi, and Sony. 
Normally, the video streams from the stereo camera pair 
would be preprocessed using rectification and undistor-
tion to simplify the convolutional neural network’s (CNN) 
3DOD task by making it easier to identify matching points 
in stereo video frames. 

Rectification involves warping the stereo frame pairs so 
that matching points in each frame align on epipolar lines 
corresponding to pixel rows in the video frames. This trans-
formation reduces the point-matching problem to a single 
dimension. The undistortion transformation reverses the ef-
fects of imperfect lenses on a captured frame so that straight 
lines are actually straight and not curved, for example. 

Both rectification and undistortion require many comput-
ing cycles, so they’re costly in terms of computing capability 
and power consumption. On top of that, both transforma-
tions introduce latency. All of these attributes are undesir-
able for a latency optimized system. 

The human brain performs 3DOD operations without re-
sorting to rectification and undistortion on an image level, 
and it’s quite possible to train a highly capable CNN to de-
tect and identify 3D objects without either rectification or 
undistortion at the input stage. The tradeoff is that addition-
al processing power is needed for training and inference. 

Training is only performed once for the CNN, so the ad-
ditional processing required to train a CNN to perform the 
3DOD task without rectification and undistortion is not a 
significant cost. For inference, working with DNR stereo im-
age frames puts additional burden on the CNN accelerator. 
Therefore, the CNN must be implemented with a perception 
chip that has sufficient processing power to handle the task.

Training and Inference Need Different Numeric Rep-
resentations

Training using DNR stereo image frames can be accom-
plished with GPUs and floating-point numeric representa-
tion, as is the rule with CNN training. However, inference 
needs to use a more compact numeric representation format 
to fit the needs of an accelerator chip. The compact number 
format minimizes off-chip storage and reduces the complex-
ity of on-chip multiplication operations within the CNN ac-
celerator, which in turn cuts the required power consump-
tion and reduces latency. 

Recogni’s ML perception chip employs a compact num-
ber format based on logarithmic math and is therefore able 
to replace the multiplication operations in the CNN with 
addition. Optimally clustering weights in the trained CNN 
achieves further optimizations.

Using data types that are smaller than the standard 
Float32 values employed for training (known as quantiza-
tion) is a frequently used strategy for inferencing on edge 
devices, but quantization presents its own challenges. Typi-
cally, the quantization strategy involves reducing weights to 
8-bit floating-point numbers or integers to reduce the re-
quired amount of memory for storing weights by 75% while 
significantly reducing computational needs. However, quan-
tizing weights in this way makes accurate regression predic-
tion far more difficult.

For example, imagine that you want to predict the dis-
tance of objects relative to the AV at ranges to 250 meters. 
Using 8-bit integers to encode the distance prediction gives 
only 256 distinct values, with a resulting resolution of 
roughly one meter. That’s clearly not an acceptable resolu-
tion for navigation or collision avoidance. 

Recogni solved this issue using an approach called hy-
brid regression, which defines a number of bins to first get 
a coarse localization of a detected object. This is a classifica-
tion problem for CNNs. To then achieve the necessary accu-
racy for automated driving, the CNN also predicts an offset 
from the bin’s center. This offset is derived by regression; 
such a hybrid approach achieves a possible accuracy of 2 cm. 

For AV applications, there’s a huge difference between 
1-m and 2-cm resolution. However, generating multiple 
classification and regression outputs to solve a regression 
problem with a CNN comes at an increased computational 
cost. This extra cost is easily absorbed by the computational 
resources in the Recogni ML perception chip.

Recogni’s Seefar Dataset
The computational resources of the Recogni ML percep-

tion chip enable it to perform real-time inference on stereo 
pairs of 8-Mpixel images. The high resolution of these ste-
reo video frames are essential to making the YoloStereo3D 
model practical for real-time navigation and collision avoid-
ance. However, none of the industry and open-source datas-
ets met the company’s training requirements because they’re 
all based on low-resolution images. 

Consequently, Recogni recorded its own training data-
set. The data-collection rig uses two cameras with onsemi 
8.3-Mpixel (3848 x 2168 pixel) image sensors as a stereo 
video camera pair. The rig also incorporates a Hesai Pan-
dar128 LiDAR for direct distance measurements that are 
incorporated into the dataset. While the LIDAR data isn’t 
directly used for inference, it makes labeling much easier. 
Recogni works with a partner for data annotation. The part-
ner provides 3D bounding boxes for a large number of ob-
ject classes.

One interesting aspect of working with this high-resolu-
tion dataset is that it reveals unsuspected performance bot-
tlenecks. The Recogni dataset’s high-resolution, high-frame-
rate, HDR video images at a resolution of 1920 × 1080 × 4 
are quite different from the standard ImageNet dataset’s 256 
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x 256 × 3 images, yet the higher resolution is essential in this 
application. At about 85X the size per tensor, data-transfer 
rate suddenly becomes extremely significant. 

Measuring 3DOD Performance
Detailed system performance measurements guide de-

velopment decisions, suggest architecture improvements, 
establish CNN training steps, and help to indicate when 
training has reached a stopping point. 

Measuring performance was even more important. That’s 
because it allowed Recogni to assess the resulting perfor-
mance and accuracy due to numeric conversion from the 
32-bit floating-point numbers used for training weights to 
the converted, fixed-point, logarithmic weights used by the 
company’s ML perception chip for inference.

Researchers apply several metrics to evaluate 3DOD 
performance. For example, the metrics used in the KITTI 
challenge or the NuScenes detection metrics match ground-
truth objects with predicted objects and then compute met-
rics based on the match between ground truth and predic-
tion. 

While the engineering team used both the KITTI and the 
NuScenes metrics, it was discovered that they have limited 
usability in an AV application because they’re built for syn-
thetic object detection challenges Object detection insights 
that reflect the real world and real-world performance were 
needed.

Here’s an example to illustrate the difference between syn-
thetic challenges and real-world performance. For a single 
car and a single prediction, the KITTI metrics require a 
70% 3D-IoU (3D intersection over union) score to associ-
ate ground truth and the predicted bounding boxes. As-
suming we predict the object’s dimensions of 4.5 × 2 meters 
perfectly, a lateral offset error of only 80 cm prevents the 
ground truth and predicted bounding boxes from matching, 
according to the KITTI matching criteria. 

As a result, the KITTI metric returns both a false negative 
result (an actual, ground-truth car that hasn’t been detected 
by the ML perception model) and a false positive object 
(an additional detection that’s not based on a true object). 
In addition, the KITTI metric produces the same outcome 
whether the prediction is off by 80 cm or 80 m. For our pur-
poses, we need to know the actual lateral offset between the 
ground truth and the prediction, which isn’t provided by the 
KITTI metric.

Customizing Performance Metrics
Consequently, the engineering team developed its own 

metrics to provide real-world performance measurements. 
Custom metrics were based on two principles: 

1. Matching bounding boxes from the model’s perspec-
tive, based on 2D image data. 2D-IoU works well for this 
metric because it’s fairly invariant to distance. The Recogni 
ML perception model matches both close predictions and 

distant predictions similarly.
2. Building a set of human-interpretable metrics. A hu-

man should be able to look at a metric or a metric change 
and easily see what the change means. For example, decreas-
ing rotation error from 4 degrees to 2 degrees is a clearly 
understandable result, while a decrease in the area under the 
rotation error curve from 0.2 to 0.15 clearly is not.

Relevant scores, calibrated to be between 0 and 1, are 
computed, with 0.5 being the “minimum acceptable error.” 
This score makes it possible to see how well the CNN is 
making predictions at a glance.

Finally, a weighted score is computed from all computed 
scores that serves as a proxy value for general quality. While 
it’s impossible to accurately represent a dozen metrics in a 
single scalar value, an overall score allows for quick com-
parisons of test runs. Experience has shown that team mem-
bers converge to one metric anyway when lacking a single 
predefined metric, so one metric is generated that helps to 
compare experimental runs.

Of course, these metrics aren’t just computable for all of 
the data—care was taken to keep them meaningful for any 
arbitrary group of samples. If a team member is interested 
in which single frame produced the worst result, or the best-
performing recorded sequence, or the recorded day with 
the worst depth error, metric computation can answer all of 
these queries.

Conclusion
Over the past several years, university researchers have 

developed many useful datasets and performance metrics 
for training and evaluating CNNs. However, the datasets 
and metrics generated by academia may not be the best tools 
for developing real-world applications such as 3DOD. You 
may need to develop your own datasets for CNN training. 

Such datasets should reflect the actual real-world data a 
system will provide to the CNN, with the correct bit resolu-
tion and the right sensor update rate. Finally, the metrics 
you use to evaluate CNNs in these applications should re-
veal real-world performance with easily understood results.
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