Security for IoT Endpoint Devices

How standards and the Arm ecosystem can help accelerate IoT development

Reinhard Keil, Sr. Director Embedded Technology Electronic Design – Engineering Academy

© 2023 Arm

Agenda

- -- The Importance of IoT Security
- Potential Security Threats

Enable secure IoT with hardware isolation and software frameworks

- -- Arm TrustZone Hardware Isolation
- + PSA Certified IoT Security Framework
- Trusted Firmware

www.psacertified.org

www.trustedfirmware.org

Arm Total Solutions for IoT

- Project Centauri bringing security and compatibility to IoT
- -- Workshops in collaboration with AWS FreeRTOS

The Importance of IoT Security

Excerpt from the "Top 12 IoT Exploits 2021"

Source: <u>https://finitestate.io/blog/top-12-iot-exploits-of-2021-p1</u>

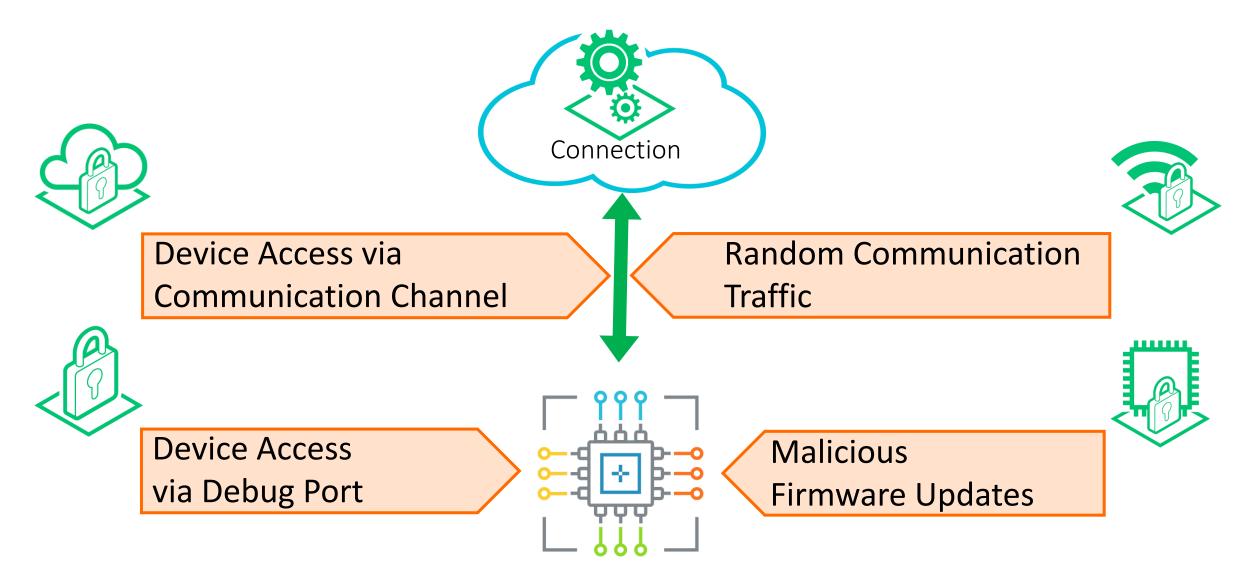
- + The Big One: The Apache Log4j Vulnerability hundreds of millions of devices are likely to be affected
- + Hard-Coded Keys: Device Vulnerabilities allow access to patient data and denial of service (DoS) attacks
- --- Dangerous DNS: NAME:WRECK Vulnerabilities allow remote code execution (RCE) or DoS
- Remote Takeover: WiFi Module Vulnerabilities take over without knowing the Wi-Fi network password (PSK)

Recent report from "Bundesamt für Sicherheit in der Informationstechnik" - 12. Oct. 2022

- Critical Flaw in SIMATIC CPU Family - outdated crypto technology gives access to control units

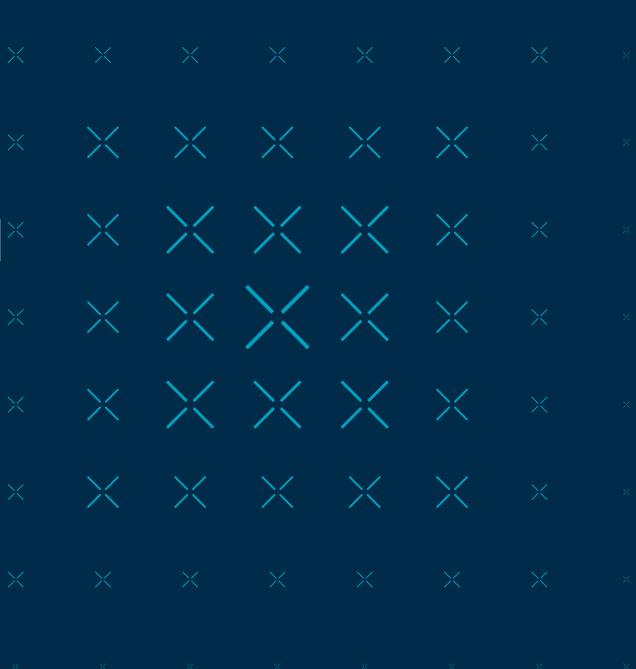
The Importance of IoT Security

- + Communication protection
 - Cryptography, authentication
- Data protection
 - Secret data (keys, personal information)


+ Firmware protection

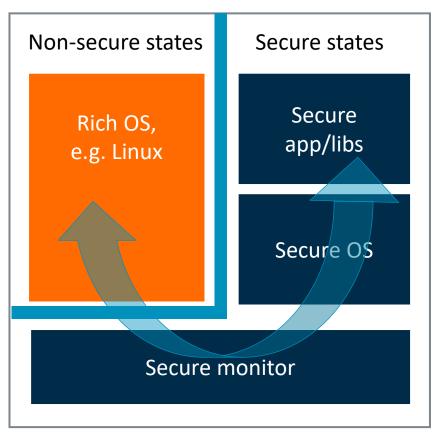
• IP theft, reverse engineering

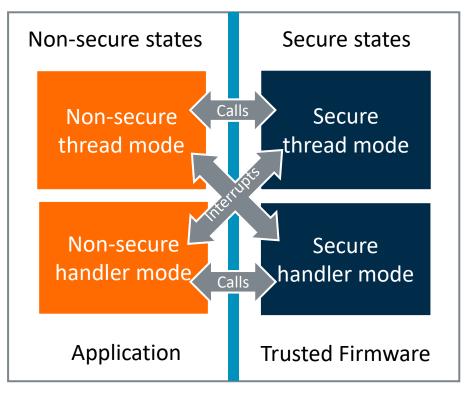
+ Operation protection


- Maintaining service and revenue
- Anti-tamper protection
 - Related to all other protections

Potential Security Threats

Enable secure IoT with hardware isolation and software frameworks ×


- Arm TrustZone Hardware Isolation
- PSA Certified IoT Security Framework
- Trusted Firmware


TrustZone Technology: System-Wide Security for IoT Devices

Isolation of critical security firmware, assets and private information from the application

TrustZone for Cortex-A

TrustZone for Cortex-M

Secure transitions handled by the processor to maintain embedded class latency

PSA Certified

psacertified.org

Created in collaboration with leading industry partners

- + Framework for securing connected devices
- Provides guidelines for threat model and security analysis
- Defines and standardizes PSA security APIs to reduce fragmentation

+ Certification program to provide evidence

SEARCH

Latest from PSA Certified

White paper

Microsoft and PSA Certified: Essential Properties of Secure Connected Devices

Developing, manufacturing, deploying and ultimately managing IoT devices securely can pose unique challenges. In this document, we illustrate the similarity of the checklists, providing an overview of each and a common goal to lay the foundations for a more secure IoT.

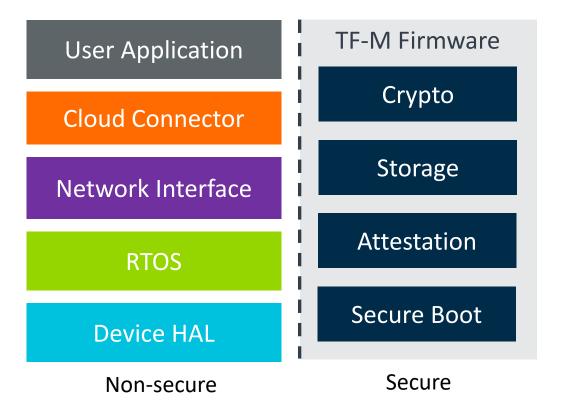
DOWNLOAD NOW

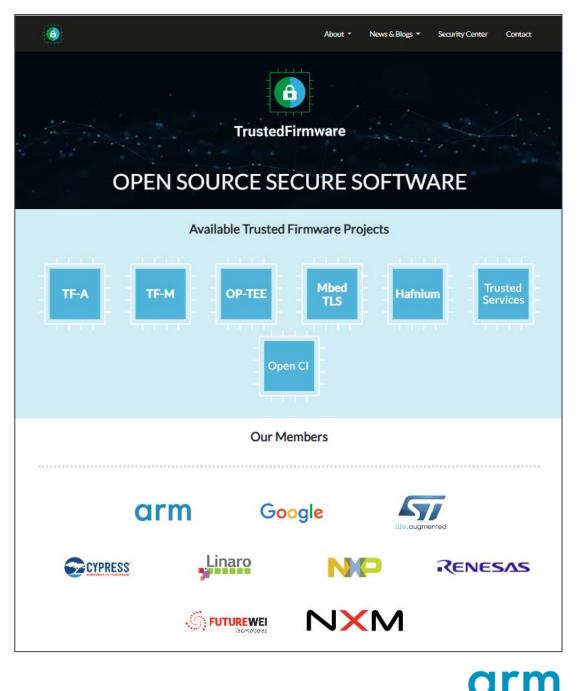
Advisory paper

Revealed: How to Reduce the Cost of IoT Security

Collaboration is key to addressing the most pressing risks. We brought together experts from across the IoT ecosystem to present five actions that will reduce the cost of security and forge a more powerful connected future.

READ MORE

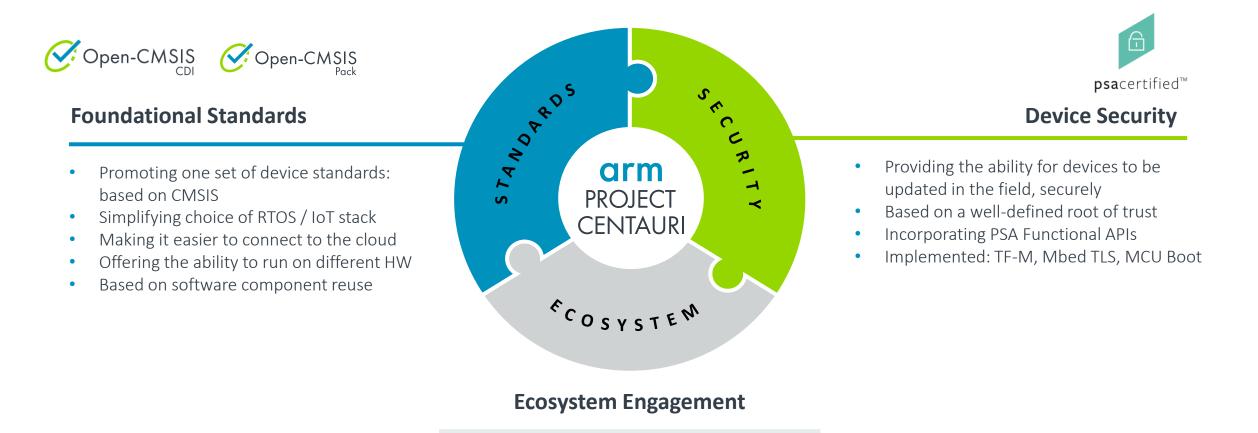



arm

TrustedFirmware.org

PSA Reference Implementations

TF-M implements the Secure Processing Environment (SPE) utilizing TrustZone for Cortex-M



Arm Total Solutions for IoT

- Project Centauri for Cortex-M
- Workshops with AWS FreeRTOS

\times	\times	\times		\times	
\times	\times	\times	\times	\times	
\times	\times	\times	\times	\times	
\times	\times	\times	\times	\times	
\times	\times	\times		\times	

Project Centauri – IoT Software Framework for Cortex-M

- Deployable Reference Implementations (IoT-SDK)
- Rich catalog of third-party software packs
- Support for a range of different development tools

Project Centauri: Specific activities

Secure firmware update, for any IoT software stack running on Cortex-M devices

PROJECT CENTAURI r^cosystenⁿ Delivering software to developers in a consistent way, whatever development environment they work with – **Open-CMSIS-Pack**

Collaborating in the open to evolve the PSA Firmware Update API, and other PSA APIs, to allow widespread support for **Secure Firmware Update**

Working with partners to identify a set of existing APIs which can form a common device interface (CDI) for cloud services to use – **Open-CMSIS-CDI**

Building a reference implementation which can be used directly by developers and can be consumed by our partners – **Open IoT SDK**

🚫 Open-CMSIS

Online Workshop

AWS Cloud Connectivity

Practical examples that get you started and runs on:

- Arm Virtual Hardware removes the need for physical devices
- + STM32U5 IoT Eval Board

aws workshop studio

Develop AWS IoT × projects on Arm Virtual Hardware with FreeRTOS and CMSIS packs

Before you Start

- Introduction
- Setup
- Arm Virtual Hardware Labs
- Lab 1: Launch an EC2 Instance with AVH AMI
- Lab 2: Building and running code with AVH
- Lab 3: Automate with GitHub Actions CI/CD Workflows
- Lab 4: Moving your project to Keil Studio Cloud (KSC)

Lab 4: Moving your project to Keil Studio Cloud (KSC) (Step 1)

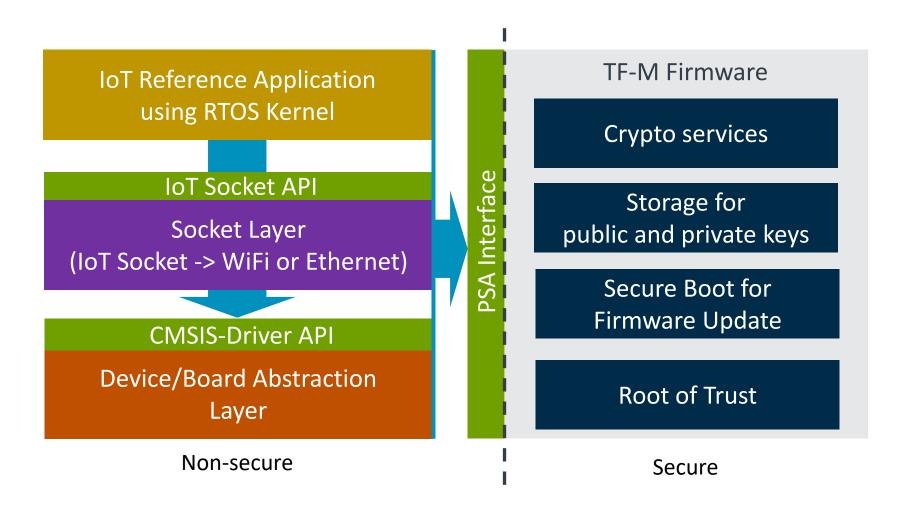
Lab 4: Moving your project to Keil Studio Cloud (KSC) (Step 2)

Lab 4: Moving your project to Keil Studio Cloud (KSC) (Step 3)

Lab 4: Moving your project to Keil Studio Cloud (KSC) (Step 4) Develop AWS IoT projects on Arm Virtual Hardware with FreeRTOS and CMSIS packs > Arm Virtual Hardware Labs > Lab 4: Moving your project to Keil Studio Cloud (KSC) > Lab 4: Moving your project to Keil Studio Cloud (KSC) (Step 2)

Lab 4: Moving your project to Keil Studio Cloud (KSC) (Step 2)

The project is imported and set as the active project:


	selp.	
Active project		README.md ×
avh-workshop	•) @	ARM Virtual Hardware Labs
Target hardware		AKIYI VII LUAI HAI UWAI E LADS
O No target selected	~) •\$	Reference examples to showcase AWS loT connectivity using ARM CMSIS packs for FreeRTOS modular libraries running on ARM Virtual Hardware.
(A)		Hardware
· In avh-workshop		Virtual Hardware: AVH Constone 300
> anaron treertos		Processor : ARM Cortex M55
> in certs > in config_files		Use Vscode and EC2 Instance with Virtual Hardware
Interface Interface		 Create an EC2 instance containing ARM Corestone 300 Virtual Hardware. Login to the EC2 Instance and close the report
C spp. main.c # swh.ymi # build.py		git clone https://github.com/aws-samples/awh-workshop.git
CODE_OF_CONDUCT.ind Compile_commands.json CONTRIBUTING.md demo.VHT_MPS3_Corstone_S UICENSE	U SE-300	3. Refer to AWS Workshop for instructions: https://gritting-started-with-arm-virtual-hardware-workshop.avvi/
README.md		
a requirements.txt a vht config.txt		

Although you could now just click the Build button in the IDE, some configuration files need editing before you build the project.

Previous Next

IoT Workshop Example – Structure

Reference Application Framework with reusable software components

Improve Development Workflows for Embedded and IoT

Benefits of cloud native for embedded and IoT software development

Version Control


Software Development

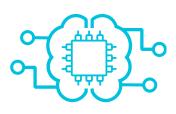
Continuous Testing

Software Deployment

Machine Learning (ML)

Cloud Storage

Repository hosting service that typically includes access control and a number of collaboration features. Software as a Service (SaaS)


Instead of installing the IDE and software tools on your local device, you access the setup of the cloud provider. Virtual Machine (VM)

A "server" running in the cloud contains a tool environment with simulation models and settings specific to your project.

Geographic Distribution

Over-the-air (OTA) programming offers methods to provision and update software of devices that are already in the field.

Data Analytics

Monitor devices to spot anomalies and collect training data for ML algorithms that can be deployed to IoT endpoints.

White Paper: Get More Productivity with Cloud Services

Summary

 \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times

© 2023 Arm

Summary

Arm is taking a holistic approach to IoT security

+ Flexible and secure IP at the chip level

+ Software developer enablement through tools and ecosystem collaboration

- PSA Certified that provides IoT Security Framework and certification
- Open-source reference applications and software building blocks
- With in-field firmware update technologies

+ Providing a clear path to end-to-end security in systems and networks

	+						
						Thank You	
						Gracias	
						+ Grazie 谢谢	
						ありがとう Asante	
						+ Merci 감사합니다	
					+	धन्यवाद Kiitos	
						شکرًا ধন্যবাদ	
© 2023 Arm						תודה	

The Arm trademarks featured in this presentation are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2023 Arm						