
By MARK PITCHFORD, Technical Specialist, LDRA, 
https://ldra.com

M
ulticore processors (MCPs) address limita-
tions in single-core computing by over-
coming the physical limitations of clock 
speeds and temperature control to support 

larger central processing unit (CPU) workloads. For hard 
real-time applications, such systems pose challenges to 
developers in knowing how to meet strict timing require-
ments and managing interference among heterogenous 
cores.

Hard real-time applications demand deterministic execu-

tion times. While the average execution time for a given 
set of tasks running on an MCP platform tends to be lower 
than for the same set of tasks on a single-core processor 
(SCP) setup, the distribution of those times is often spread 
out. This variability makes it difficult to guarantee timing 
requirements for critical tasks. It also causes significant is-
sues for applications where every individual execution time 
matters—not just the average.

The Certification Authorities Software Team (CAST) ad-
dresses these challenges in its position paper for avionics 

A Holistic Approach to 
Meet Multicore-System 
Timing and Interference 
Requirements 
This article offers insights on how different analysis techniques combined with 
CAST-32A and A(M)C 20-193 guidance can ensure confidence in meeting timing 
requirements in real-time multicore systems.

1. Different execution times and guarantees for a given real-time task.

☞LEARN MORE @ electronicdesign.com | 1

https://ldra.com
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF


manufacturers, “CAST-32A, Multi-
core Processors.” This paper sets out a 
series of objectives that must be met 
in the software development lifecycle 
(SDLC) to ensure that a multicore sys-
tem is understood, particularly timing 
behaviors. These objectives aren’t pre-
scriptive requirements for developers 
to implement, but rather guide and 
support activities toward generally ac-
cepted standards like DO-178C.

The AMC 20-193 document has 
already superseded and deprecated 
CAST-32A in Europe, and it’s expect-
ed that AC 20-193 will soon follow 
suit in the U.S. Known collectively as 
A(M)C 20-193, these successor docu-
ments very largely duplicate CAST-
32A.

This article describes approaches 
for applying the guidance provided 
in CAST-32A and its successor documents, including tech-
niques for measuring timing and interference on heteroge-
neous multicore processors. 

Why Worst-Case Execution Times Matter for Hard Real-
Time Systems

Hard real-time applications, in avionics or elsewhere, 
must meet strict timing requirements to ensure operational 
functionality and safety. Soft real-time systems are less con-
strained and the impacts of missing a timing deadline are 
less severe. The table provides a real-world example of the 
key differences between these two types of real-time sys-
tems.

The shortest execution time for a given CPU task is called 
the best-case execution time (BCET); the longest is called 
the worst-case execution time (WCET). Figure 1 provides a 

visual of how these values are determined given an example 
set of timing measurements.

SCPs can guarantee the required upper timing bounds are 
always met as long as extra CPU capacity is planned and 
maintained sufficiently. MCPs present a greater challenge 
because there’s no effective method for calculating a guar-
anteed tasking schedule that accounts for multiple process-
es running in parallel across multiple heterogenous cores. 
Compounding this challenge is the impact of hardware in-
terference on tasks, which can change from core to core to 
disrupt the predictability and measurement of task timing.

For example, in the shared hierarchical memory archi-
tecture (Fig. 2), memory-access collisions cause different 
interference channels for different cores. These channels 
may result in the spreading of distribution of task execution 
times, making it difficult to guarantee predictable and hard 

real-time determinism in the system.
Unlike single-core systems, develop-

ers have no multicore approximation 
methods that can be calculated statical-
ly to generate usable approximations of 
WCETs and BCETs. Developers must 
leverage test and measurement results 
that offer as much confidence as pos-
sible.

How CAST-32A and A(M)C 20-193 
Guide Developers

CAST-32A and A(M)C 20-193 sup-
plement the DO-178C processes for 
multicore processors with 10 objectives 

2. Here’s one example of hardware interference in a shared hierarchical memory architecture.

☞LEARN MORE @ electronicdesign.com | 2

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF


for software planning through to verification. These objec-
tives include the following (specific objectives are identified 
in parentheses):

• �MCP configuration settings are determined and docu-
mented, as these options can impact system behavior 
and safety in many ways. It’s especially important to 
track these settings throughout the project lifecycle, 
because the nature of iterative development and testing 
makes it likely that configurations will change. (MCP_
Resource_Usage_1)

• �MCP interference channels are identified and mitigation 
strategies are verified to reduce the likelihood of issues 
at runtime. (MCP_Resource_Usage_3)

• �MCP tasks have sufficient time to complete execution 

and adequate resources are allocated when hosted in 
the final deployed configuration. (MCP_Software_1 and 
MCP_Resource_Usage_4)

• �Data and control coupling between software compo-
nents have been exercised during testing to demonstrate 
that their impacts are restricted to those intended by 
the design. This is important because flawed coupling 
is likely to have an impact on timing, as data is accessed 
at different times by different threads on different cores. 
(MCP_Software_2)

In terms of resourcing, CAST-32A and A(M)C 20-193 
recognize the value of partitioning in time and space. This 
enables developers to perform application verification and 
WCET determination separately if they have verified that 

4. LDRA tool suite screenshots show histograms of execution times and timing summaries. (Source: LDRA)

3. Halstead’s metrics are calculated using the LDRA tool suite. (Source: LDRA)

☞LEARN MORE @ electronicdesign.com | 3

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF


the MCP platform provides robust resource and time par-
titioning. As the documents imply, the use of robust parti-
tioning is likely to simplify interference mitigation.

Neither CAST-32A nor A(M)C 20-193 prescribe methods 
for achieving these objectives, leaving them to the develop-
ment team to select. While these documents are advisory 
guidelines only, developers should be aware that section 
6.3.4 of the DO-178C standard explicitly specifies the need 
for WCET analysis:

6.3.4f: Accuracy and consistency: The objective is to deter-
mine the correctness and consistency of the Source Code, in-
cluding stack usage, memory usage, […] worst-case execution 
timing, exception handling […]

Analyzing Execution Times for Real-Time Systems
The state space variability of MCP-based systems has im-

plications for timing measurements across the development 
lifecycle. The four execution-time analysis methods that fol-
low are proven effective to meet the needs of deterministic 
task schedule design and support the CAST-32A and A(M)
C 20-193 guidelines.

Prioritizing timing analysis using static analysis
The Halstead complexity metrics can be used to identify 

sections of code that pose the highest demands on process-
ing time, and static-analysis tools are able to both calculate 
and supplement this data with actual measurements from 
the target system. Such metrics provide an early indication 
of the complexity and potential resource requirements of a 
code segment by providing insights into module size, con-
trol-flow structures, and data flow.

Using Halstead’s metrics helps developers prioritize their 
efforts in timing analysis and in optimizing sections of code 

5. Data-coupling analysis and 

control-coupling analysis within 

the LDRA tool suite (Source: 

LDRA)

☞LEARN MORE @ electronicdesign.com | 4

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF


that exhibit larger size, higher complexity, and intricate data-
flow patterns. This helps reduce the risk of timing violations 
and improve the overall timing behavior of the system. Tools 
like the LDRA tool suite can calculate these metrics (Fig. 3). 

Empirical execution-time analysis
Once developers identify the high-priority modules, they 

can use dynamic analysis to measure and report on task tim-
ings as well as tune the system if objectives aren’t met (“in-
terference analysis”). To ensure the utmost accuracy, they 
should be aware of three critical considerations:

1. The analysis must take place in the environment where 
the application will eventually run to avoid the influence of 
configuration differences between development and pro-
duction, such as compiler options, linker options, and hard-
ware features.

2. The analysis must execute enough tests repeatedly to 
account for environmental and application variations be-
tween runs.

3. Automation is highly recommended to ensure a suffi-
cient number of tests are executed in a reasonable amount 
of time, as well as avoid the influence of relatively slower 
manual actions.

The LDRA tool suite offers a particularly robust mecha-
nism for execution time analysis via a “wrapper” test har-
ness to exercise modules on the target device (Fig. 4). This 
mechanism automates timing measurements and allows 
developers to define the components under test, whether at 
the function level, a subsystem of components, or the overall 
system. It also enables developers to specify the type of CPU 
stress tests to perform to improve confidence in the results, 
such as using the open-source Stress-ng workload generator.

Control and data-coupling analyses
Control and data-coupling analyses examine how task 

execution and data dependencies in one task affect another 
task to identify potential timing issues. For example, if one 
task relies on the completion of another task before it can 
proceed, there may be issues when execution is delayed. If 
the currently executing task misses its deadline, it can im-
pact the timing requirements of the dependent task.

Similarly, data-coupling issues may arise when multiple 
tasks access a shared resource concurrently without proper 
synchronization mechanisms. This will ultimately lead to 
data races or resource contention issues that impact timing.

The LDRA tool suite supports control coupling and data-
coupling analyses relating to data and control flow between 
software components and applications (Fig. 5). The results of 
these analyses help developers to identify critical sections of 
code that require optimization or restructuring to minimize 
control-flow dependencies and alleviate data contention.

Requirements traceability
The empirical nature of timing analysis in MCP environ-

ments makes interference analysis an iterative process (Fig. 

6). The repeated modification of tasks and tuning of config-
uration parameters will likely have knock-on effects to other 
aspects of test that will need to be regressed. Conversely, any 
requirements change may introduce or alter interference 
channels in the system. Therefore, knowing where and how 
impacts may occur helps developers to avoid downstream 
issues.

It’s also important for developers to track the fulfillment 
of CAST-32A, A(M)C 20-193, DO-178C, and other appli-
cable guidance and to regress tests that show their continued 
fulfillment.

An automated mechanism, such as the requirements 
traceability features of the LDRA tool suite, helps develop-
ers keep track of the components that need revisiting based 
on the results of timing verification and validation.

Conclusion
Ensuring timing requirements are met in hard real-time 

multicore systems is a complex undertaking. The influences 

6. This is the recommended approach to multicore timing-analysis 

feedback. (Source: LDRA, based upon work by Wind River Systems 

and Collins Aerospace)

☞LEARN MORE @ electronicdesign.com | 5

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF


on task timing and analysis are numerous and require a dis-
ciplined approach to test setup and execution. In addition, 
the tight coupling between task execution time and software 
requirements means development teams must employ a ro-
bust feedback loop to ensure test failures trigger the appro-
priate corrective actions. 

By addressing such challenges, developers are better able 
to leverage the capabilities of MCPs in robust, reliable, and 
certifiable ways.

Mark Pitchford has over 25 years’ ex-
perience in software development for en-
gineering applications. He has worked on 
many significant industrial and commer-
cial projects in development and man-
agement, both in the UK and interna-
tionally. Since 2001, he has worked with 
development teams looking to achieve 
compliant software development in safe-
ty and security critical environments, working with standards 
such as DO-178, IEC 61508, ISO 26262, IIRA and RAMI 4.0. 

Mark earned his Bachelor of Science degree at Trent Uni-
versity, Nottingham, and he has been a Chartered Engineer 
for over 20 years. He now works as Technical Specialist with 
LDRA Software Technology. 

☞LEARN MORE @ electronicdesign.com | 6

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

