
HARRY HONG, Senior Embedded Software Engineer,
NeuronicWorks, www.neuronicworks.com

P
roportional integral derivative (PID) control is a
common method used to regulate the dynamic
behavior of a system. Examples are found in many
industrial devices, where it’s employed for control

of temperature, pressure, flow, speed, or position, to name a
few typical applications.

The theory and mathematics behind PID control have
been the subject of much discussion. But how does one ap-
ply this math and theory to implement a real device? To
demonstrate how that’s done, this article will explore a thor-
ough example.

The task of position control will be discussed for the
case of a linear servo motor. To begin with, the mathemati-
cal function governing the PID controller’s operation is
presented. We’ll show how the parts of the function fit to-
gether in a practical design. Specifically, we’ll address con-
siderations for interfacing elements in the electrical circuit
to accomplish those parts of the PID function for position
control, as well as what’s involved in implementing the func-
tion in the firmware code of a microcontroller that will do

the controlling.

PID Fundamentals
The universal mathematical function which is the basis of

any PID control application can be stated as follow:

where e(t) is an error value:

and for the case of position control, r(t) is a set position
and y(t) is the current position.

A diagram can provide us a much more intuitive under-
standing of how this math works when applied to a servo
motor. Figure 1 illustrates the block diagram of a linear ser-
vo PID control system.

Some key elements of the system depicted in Figure 1 are
a Set Position input (the setpoint, or our target position for
the linear actuator), a pulse-width-modulated (PWM) sig-

Positioning a Linear
Servo Motor with a PID
Controller
This article explains proportional integral derivative (PID) control, including the math
behind it, with the use case of a linear servo motor.

1. Linear servo PID control system.

☞LEARN MORE @ electronicdesign.com | 1

http://www.neuronicworks.com
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

nal of some Duty Cycle which drives the actuator, and the
Current Position of the actuator. These correspond with the
quantities r(t), u(t), and y(t), respectively, in the mathemati-
cal equations.

It’s called closed-loop control because a feedback loop re-
lays information about the current state back into the sys-
tem, allowing it to obtain the difference between this cur-
rent state and the desired setpoint, which must be corrected.
Being specific for our case, Current Position is subtracted
from Set Position to obtain the Error (or difference) signal,
as shown above. This Error corresponds with the quantity
e(t).

And as mentioned at the beginning of the article, PID
stands for Proportional, Integral, and Derivative. These refer
to the three control signals generated for regulating a PID
control system’s operation.

As indicated in the math and the diagram, the three con-
trol signals are produced from the Error signal, are output
from the Proportional, Integral, and Derivative blocks—
also labeled with their respective gains Kp, Ki, and Kd—and
are combined to produce the Duty Cycle of the PWM signal

driving the actuator.
Now that we have described the structure of the system,

we want to implement it in firmware. But to do this, we need
to understand how to interface the linear actuator with the
microcontroller. In particular, how do we obtain the Duty
Cycle signal from the PID function to drive the actuator,
and how can the actuator generate the Current Position sig-
nal to feed back to the PID function?

Subsequently, we can explain how to translate the PID
function into firmware source code written in the C pro-
gramming language. Some sample data demonstrating the
working implementation will then be presented as the basis
for understanding the roles of the three PID control signals
and how to tune their performance.

Electrically Interfacing the Linear Actuator
A linear actuator is used to lift, tilt, pull, or push objects

(Fig. 2). The micro linear actuator we use here consists of a
dc servo motor for the actuation part and a potentiometer
for the position sensing part.

For this unit, the PID controller board needs to output a
12-V PWM signal to control motor speed, and use an ana-
log-to-digital converter (ADC) channel to sense the posi-
tion of the actuator. Accordingly, we should configure two

4. PWM signal
graphs.

2. Shown are examples of linear actuators. (Source: actuo-
nix.com)

3. Potentiometer
ADC circuit.

☞LEARN MORE @ electronicdesign.com | 2

https://www.actuonix.com/t16-300-64-12-p
https://www.actuonix.com/t16-300-64-12-p
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

GPIO pins on the microcontroller, one for the PWM and the
other for the ADC.

The position output of the linear actuator is a resistance
value. If the potentiometer is connected between a power
rail Vdd and ground (Fig. 3), then the resistance at the wiper
can be measured as the output of a simple voltage divider.
The range and unit of position are changed from 0 ~ 10,000
Ω to 0 ~ Vdd V, and the ADC converts the voltage to a digital
value that’s our implementation’s current position y(t). If the
ADC’s resolution is 10 bits, this digital value is between 0
and 1023.

It’s convenient for our controller output u(t) also to be a
digital value representing a voltage. However, this control-
ler output drives the linear actuator, which isn’t expecting
a varying voltage as input to control its speed, but rather a
fixed-voltage PWM signal with varying duty cycle. There-
fore, a conversion is needed.

The graphs in Figure 4 show how voltages from 0 V up to
12 V translate to a 12-V PWM signal with variable-width
pulses from 0% to 100% duty cycle. To be strictly correct,
voltages above 12 V also must be accounted for, and must
translate to a duty cycle of 100%, since the math in no way
constrains the controller output to be below 12 V.

As a final remark regarding actuator interfacing, we
should emphasize that it’s only the nature of the speed-con-
trol and position-sensing features of our chosen device that
have guided us to designate u(t) and y(t) both to be (con-
veniently) voltage quantities in our implementation. These
quantities aren’t otherwise related, and in another applica-
tion might not even be in the same unit of measurement if
the nature of the controlled device’s interfaces were to dic-
tate otherwise.

Writing the Firmware
For firmware to function as

a PID controller, it must deter-
mine the error value e(t), eval-
uate the PID function to adjust
the signal u(t) that drives the
device, and do this continu-
ously over time. However, for
firmware execution to perform
a task in truly a continuous
fashion isn’t a feasible concept.
The closest it can come is to
repeat—or iterate—the task
quickly at short time intervals.

If that task is the PID algo-
rithm, then its continuous time
math needs to be replaced with
a discrete time version, with
the following implications:

1. A fixed interval T is designated to be the time between
iterations, i.e., their period.

2. Evaluation of the error value e(t) at the moment t in
continuous time is replaced with evaluation at iteration n
in discrete time, i.e., e(n) = r(n) – y(n), where n = 0, 1, 2, …

3. The continuous time integral of e(t) is replaced by a
discrete time summation of e(n)T .

4. The continuous time derivative of e(t) is replaced by the
linear slope of e(n) between the previous and the current
iteration – i.e.:

And, therefore, the discrete time output signal u(n) evalu-
ated at iteration n can be stated as follows:

Now we can implement the discrete time PID control
function. In the example C code (see codelist), variables
and constants are given names that closely match the cor-
responding elements in the mathematical equations. This
code can be executed in each iteration of the PID firmware,
typically within a timer interrupt configured to trigger every
T milliseconds.

[See codelist below]
What remains to be done is assign proper values to the

PID gains Kp, Ki, and Kd so that the system performs cor-
rectly when asked to move to a chosen setpoint. We will
manually select different values for these gains to investi-
gate their effect on position control, and in so doing, dem-
onstrate a common approach for tuning them. We also will

☞LEARN MORE @ electronicdesign.com | 3

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

provide some insight into the purpose of each term in the
control function.

PID Gain Tuning
There are several criteria for evaluating the performance

of the system, including dead time, rise time, overshoot, set-
tling time, and steady-state error. While performance expec-
tations should be defined according to these criteria before
tuning the PID gains, such expectations depend on the ap-
plication’s requirements. So for the purpose of this article,
it will be sufficient to provide some sense of when various
criteria are affected by the adjustment of the different gains.

Each of the Kp, Ki, and Kd gains will be tuned separately,
and in that order, given a selected setpoint. More specifi-
cally, the code will be executed with one of the gains set to
a different value for each execution, and the value of r set
to 700.

As to the relevance of this 700 value, the reader should
recall that Current Position is a digital value representing

the voltage obtained from the actuator’s potentiometer, and
Current Position is now represented by the variable y in
our code. The Set Position—represented by the variable r
in our code—is a digital value in the same range, which as
mentioned previously is between 0 and 1023 if the ADC
has 10-bit resolution. A setpoint value of 700 is therefore
reasonable, although arbitrary.

Tuning Kp to get close to the target position
Kp is the proportional gain. The proportional term of the

control function compensates for the current error by mov-
ing the linear actuator with a signal proportional to this
current error. It makes sense that the proportional term is
used to get the current position close to the target, since
this error is the difference between the actuator’s set posi-
tion and its current position. The proportional term makes
the control function seek to reduce it to zero.

In this first step of tuning, we set the integral and deriva-
tive gains Ki and Kd to zero and increase the proportional

6. Integral gain tuning.

5. Proportional gain tuning.

☞LEARN MORE @ electronicdesign.com | 4

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

gain Kp until the actuator settles near the target position
(700). A proportional gain that’s too high will cause oscil-
lation.

The graphs in Figure 5 show how the actuator’s current
position changes over time for different values of Kp. We will
select Kp = 1, observing that it causes the current position to
settle near the target and with the fastest settling time.

The reader will notice that there’s a residual steady-state
error, where the final current position is offset from the tar-
get setpoint position. This offset is common in the case of a
purely proportional controller and will be eliminated when
the integral gain is tuned in the next step.

Tuning Ki to eliminate steady-state error
Ki is the integral gain. The integral term of the control

function compensates for the past error by moving the lin-
ear actuator with a signal proportional to the amount of this
past error, which has accumulated over time. It makes sense
that the integral term is used to eliminate steady-state error,
since this error is a constant offset that grows the integral

over time, thus making the control function seek to reduce
it to zero.

In this second step of tuning, we keep the proportional
gain Kp = 1 selected in the first step, set the derivative gain
Kd to zero, and increase the integral gain Ki until the actua-
tor settles much nearer the target position (700)—i.e., until
the stead-state error is close to zero.

The graphs in Figure 6 show how the actuator’s current
position changes over time for different values of Ki with Kp
= 1. The results for Ki = 0.5 may be quite satisfactory for a
given set of requirements, and we may elect not to involve a
derivative term, in which case the solution would be a pro-
portional integral (PI) controller.

Alternatively, though, we may prefer to select Ki = 2, per-
haps due to the improved rise time shown in its results. The
reader will notice that the better rise time in this case comes
at the expense of an overshoot. This overshoot will be elimi-
nated when the derivative gain is tuned in the next step.

Tuning Kd to eliminate overshoot
Kd is the derivative gain. The derivative term of the con-

trol function compensates for the future (estimated) error
by moving the linear actuator with a signal proportional to
the amount of this future error as estimated based on the
time derivative of the error, i.e., its rate of change.

It makes sense that the derivative term is used to elimi-
nate transient effects such as overshoot, which are naturally
reflected in the time derivative, thus making the control
function seek to reduce them to zero. Improved stability in
the presence of disturbances and better settling time are ad-
ditional related benefits. Note, however, that the derivative
term can make a control system unstable if the error signal
is very noisy.

In this third step of tuning, we keep the proportional and
integral gains Kp = 1 and Ki = 2 selected in the first two
steps and increase the derivative gain Kd until the overshoot
is eliminated. A derivative gain that’s too high will cause os-
cillation.

The graphs in Figure 7 show how the actuator’s current
position changes over time for different values of Kd with
Kp = 1 and Ki = 2. We’ll select Kd = 0.05, observing that it
effectively reduces overshoot while maintaining improved
rise time.

Then, in the version of our controller, which has all three
signals Proportional, Integral and Derivative enabled, we’ve
successfully tuned their gains for proper controller behav-
ior. We’ve also determined that the gain values should be Kp
= 1, Ki = 2, and Kd = 0.05.

Conclusion
This article about PID control explained the mathemat-

ics at the heart of a PID controller and provided a practical
example of how to implement this math to run on a micro-7. Derivative gain tuning

☞LEARN MORE @ electronicdesign.com | 5

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

controller. Practical considerations were discussed about the
nature of signals between the microcontroller and a dc servo
motor for the purpose of position control.

Finally, some data was presented to demonstrate how the
Proportional, Integral, and Derivative terms of the control
function can be manually tuned for proper performance. It
also gives the reader an idea of the purpose served by each
of them in the PID algorithm.

Instead of designing PID control into a custom embedded
device, generic off-the-shelf PID controllers are available al-
ternatives in the industrial market, some of which, for ex-
ample, are based on programmable logic controllers (PLCs).
These may satisfy the needs of many users.

However, it may not be satisfactory for your application
if it requires non-standard functions related to your plant
processes. Or if it has special data communication needs, or
if the generic controller has unneeded features you wish to
avoid for a cost-sensitive application. A custom PID control-
ler design is an option in such cases.

☞LEARN MORE @ electronicdesign.com | 6

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

