
By NEIL PUTHUFF, Senior Automotive Applications Engineer, RTI

T
he introduction and ongoing releases of the robot
operating system, ROS 2 (now built on top of the DDS
framework), has expanded its use beyond its original
focus on robotic research. ROS 2 comes bundled with

application packages and visualization tools, so it facilitates
making robotics systems that can sense, map, and navigate
their surroundings.

About DDS
Data Distribution Service (DDS) is an open-standard,

data-centric communications software framework with
more than a dozen commercial and open-source imple-
mentations. It provides low latency, extreme reliability, and
a rich set of Quality of Service (QoS) controls to enable ro-
bust peer-to-peer communications in the most challenging
of environments: contested battlefields, noisy industrial set-
tings, wide-area networks, and remote systems with inter-
mittent connectivity.

DDS has been used in thousands of critical systems, hun-
dreds of autonomous-vehicle programs, and dozens of other
frameworks and standards including ROS 2, AUTOSAR,
and FACE.

About ROS
The free, open-source ROS project is a one-stop shop for

quickly creating robotics applications and systems. First re-
leased in 2010, the original ROS rapidly became popular in
academia, eventually turning into the dominant framework
for robotics researchers and educators.

The main value in ROS is in its tools and pre-built pack-
ages. Its main disadvantage was the middleware, which pre-
vented it from being used in critical or constrained systems,
in multi-robot swarms, or in applications with real-time
constraints. As a result, ROS remained largely in academia

for more than a decade.

ROS + DDS = ROS 2
ROS 2 is a redesign of the original ROS that should help

solve emerging challenges in robotics. Built on top of the
DDS framework, ROS 2 seeks to operate in constrained
systems, multi-robot swarms, and production-grade plat-
forms—an ideal marriage that combines the outstanding
tools and packages of ROS with the “works everywhere”
capabilities of DDS. ROS 2 has helped ROS break out of aca-
demia.

The success of ROS 2 has led to the retirement of the
original ROS following the 2020 “Noetic” release. All future
ROS development is now on ROS 2, and all communica-
tions within ROS 2 flow via DDS. So, in effect, all ROS 2
applications are also DDS applications, and the ROS 2 eco-
system is a part of the DDS ecosystem. Read on to learn why
this is an important distinction.

Is ROS 2 the Sum of its Parts?
Not quite. ROS 2 is a big improvement over the original

version of ROS, but when ROS 2 is viewed from the field-
proven perspective of DDS, it has some significant limita-
tions.

However, those limitations can be overcome by directly
accessing the DDS framework upon which ROS 2 is built,
enabling system developers to get the full benefit of DDS
while maintaining compatibility with ROS 2. Let’s examine
these limitations and how they can be resolved using this
approach.

Performance
Because ROS 2 is layered on top of DDS, any data sent

or received within ROS 2 must travel through these layers

ROS and DDS: Making the
Most Out of Your Software
Framework
ROS 2 has become popular beyond robotics, but it has significant technical limitations.
Learn how to break past these limits using the powerful framework on which ROS 2 is built.

☞LEARN MORE @ electronicdesign.com | 1

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

before reaching the underlying DDS framework. This takes
a substantial amount of time.

By designing critical application components to directly
use the underlying DDS API, engineers can eliminate many
performance bottlenecks. For example, during the 2021
Indy Autonomous Challenge, a ROS 2 LiDAR device driver
was modified to directly use the DDS API. This cut latency
by up to 90% compared with a driver that used ROS API but
didn’t affect full interoperability with ROS 2 (Fig. 1).

This approach was employed to dramatic effect by the
winning team of the Indy Autonomous Challenge, a $1.5M
competition to autonomously race full-size Dallara IL-15
vehicles at the famous Indianapolis Motor Speedway. Not
only did the approach eliminate the bulk of data latency, it
also freed up two-thirds of the memory used by the ROS 2
driver, while maintaining drop-in compatibility with ROS 2.

Scalability
ROS 2 systems can quickly run into scalability issues be-

cause they create large numbers of data topics (unique, dis-
coverable data flows) to support the implementation of ROS
Parameters, Services, and Actions in ROS 2.

In operation, every ROS 2 application node creates more
than a dozen unique topics for Parameters (even if you don’t
use them), and more unique topics are created for every
ROS 2 Service, Message, and Action used in your applica-
tions. Consequently, it doesn’t take long for a system to have
hundreds or thousands of topics competing for space on the
network.

An equivalent DDS system can avoid this overhead. First,

common data types may be implemented using Keyed Top-
ics, which enables large numbers of unique data sources to
share common data flows while retaining their unique iden-
tity, easing congestion in large-scale systems.

Second, DDS can be used to create topic gateways to par-
tition your large ROS 2 system into a tiered hierarchy, per-
mitting only the necessary data to flow to other parts of your
system. This comes in handy in situations such as creating a
system of many mobile robots connected over a common
wireless network.

Third, any applications implemented directly on DDS will
not create the dozen-or-more topics created by ROS 2 for
its parameter system, which directly reduces the number of
topics on the network. The result is a system with reduced
network traffic, faster startup, and greater scalability than
the equivalent ROS 2 implementation.

Quality of Service (QoS)
QoS plays the primary role in assuring dependable system

communications under real-world conditions. While DDS
itself has a comprehensive set of QoS capabilities, the major-
ity aren’t accessible from within ROS 2. As a comparison:

ROS 2 has support for eight QoS categories, with basic
on/off and sizing control for History, Depth, Reliability, Du-
rability, Deadline, Lifespan, Liveliness, and Lease Duration.

OMG Standard DDS has 22 QoS categories. Here’s a few
highlights of what’s not in ROS 2:

• Entities and Keys: These enable vast scale-up by shar-
ing common data topics using unique “Keys” for each data
source. This makes the system start faster and run more ef-

1. Applications that directly use the DDS APIs beneath ROS 2 eliminate the data latency of the ROS 2 framework, while maintaining full ROS 2

compatibility.

☞LEARN MORE @ electronicdesign.com | 2

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

ficiently, and it reduces the load on the network.
• Instance Management: This allows applications to man-

age open-ended collections of objects (e.g., robot swarms)
where all objects in the collection publish the same Topics
but they’re distinguished by an Instance Key (typically the
identifier of the object in the collection, e.g., a robot_id).
Subscribers subscribe to the “collection” topic and are no-
tified as new objects join or leave the collection or if any
object ceases to be active. The data published by each ob-
ject in the collection is maintained in a separate sub-stream
(identified by the Instance Key) and the QoS is applied to
each sub-stream separately.

• Data Cache: This allows the application to access the data
cache of the subscriber (DataReader in DDS terms) directly.
The cache provides zero-copy views of the data received syn-
chronously or asynchronously with data reception. The data
can be accessed multiple times (e.g., to perform aggregation
or sensor fusion) without requiring the application to keep
extra copies.

• Ownership and Strength: These provide for automatic
failover when using redundant components. This also en-
ables zero-downtime during system upgrades, maintenance,
and testing.

• Transport Priority: This allows a system to give prefer-
ence to a transport when it’s available. For example, a mobile
system using cellular communications can be made to auto-
matically switch over to Wi-Fi when available.

• Partitions: These enable a network to be divided into iso-
lated logical sections. Data flows within these sections can’t
interact with outside elements, thus providing system-scale

encapsulation of related areas.
Vendor-Extended DDS offers even more capabilities to

meet real-world networking challenges. For example, RTI
Connext DDS has options for wide-area-network (WAN)
connectivity, small sample batching, content filtering and
querying, compression and bandwidth reduction, time-sen-
sitive networking (TSN), and more.

Each DDS implementation can choose where to focus
their efforts in these QoS categories, from simple on/off
controls to fully tunable parameters, or to omit the category
entirely. These will have a direct impact on whether your
system can run in a particular environment or not. Simply
put, more QoS means more adaptability. A capable DDS
implementation will be able to operate in countless environ-
ments where ROS 2 cannot.

Interoperating with Non-ROS Systems
As DDS is used in thousands of critical systems and in

standards such as AUTOSAR and FACE, a ROS 2 system
also may need to interoperate with these non-ROS environ-
ments based on DDS.

While DDS provides standards-based interoperability, the
implementation within ROS 2 imposes a set of rules and re-
strictions on the names of data types and topics that it will
accept. Any data that falls outside of these rules is ignored
or unusable. This has a direct impact on ROS 2’s ability to
interoperate with non-ROS systems built on DDS, so a sep-
arate bridge application must be written to translate these
non-conforming data types into something that ROS 2 can
accept.

2. Here’s a comparison of C++ source code for a “Hello, World!” application written in ROS 2 vs. code written directly in the underlying DDS (RTI

Connext) used by ROS 2. (Source: Real-Time Innovations)

☞LEARN MORE @ electronicdesign.com | 3

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

However, an application written to directly use the DDS
API can easily interoperate with any DDS-based system,
such as ROS 2, AUTOWARE, FACE, and many others. In
this role, DDS can be thought of as something like a “Hyper-
visor for Distributed Systems,” capable of directly integrat-
ing many different types of DDS-based applications (ROS 2,
AUTOSAR, etc.) into a high-performance system.

Getting the Best of DDS and ROS 2
DDS maintains a very stable, standards-based software

API, and ROS 2 has a very stable data model and is itself
based on DDS. However, ROS has a history of introducing
changes to its software API with each major release, which
creates an ongoing burden for developers who must update
and version-stamp their applications to keep pace with ROS.

There’s a way to get the full benefits of DDS while retain-
ing the benefits of ROS 2 and eliminating its drawbacks:
Implementing critical components directly in DDS using
the ROS 2 data types.

This hybrid combination has some compelling benefits:
• Significantly improved performance. Eliminating the

ROS 2 software layers can eliminate more than 90% of the
latency of data communications. This approach also enables
full access to advanced capabilities of DDS implementations
that aren’t supported in ROS 2, such as zero-copy transfers,
reduced encoding, compression, etc.

• Scalability unbounded. By using keyed topics and DDS-
enabled hierarchical design, your system can scale to mas-
sive proportions, as was done with the Constellation control
system at the Kennedy Space Center (the largest SCADA
system in the world).

• Access to all DDS QoS. Quality of Service enables your
systems to work in the most demanding environments,
where ROS 2 cannot venture.

• Fully interoperable with ROS 2, and with non-ROS DDS
systems.

• Supported on production-grade hardware and operat-
ing systems, and available in safety-certifiable versions.

While this might seem like a risky introduction of new
technology to a ROS 2 development, it’s actually the oppo-
site. Developers using ROS 2 are already working with DDS;
this change merely gives them a more direct connection to
DDS. Let’s now look at how that affects the software.

Examining the Software API
ROS and DDS are both data-centric, publish/subscribe

technologies with very similar design patterns. Taking a
closer look at the ROS 2 API shows that the bulk of the API
functions cover data communications, which are provided
under the hood by the DDS API. The remainder are mostly
common system-level functions (files, timers, callbacks,
etc.) that can be found in standard libraries.

Therefore, the API patterns of creating applications di-
rectly in DDS should feel very familiar to developers accus-
tomed to ROS 2. But what about the source code? Figure 2
illustrates a comparison of a simple “Hello World!” applica-
tion written using the ROS 2 and DDS APIs.

Implementing systems directly in DDS can be a natural
progression for developers using ROS 2. It follows similar
design patterns but provides far greater control over system
communications, while eliminating many layers of software
that hinder debugging.

Implementing the Improvements
A typical pattern for this hybrid use case is to replace criti-

cal system components written in ROS 2 with their native
DDS equivalents. Because of the standards-based interoper-
ability of DDS, the replacements can be dropped in with-
out disruption to the remainder of the ROS 2 system. An
example might be a signal-processing module for camera
or LiDAR that needs to operate at minimum latency, or a
gateway application to communicate with many peer units
over a radio transport.

The system developer can implement these improvements
strategically, replacing only critical components while leav-
ing the remainder of the system in ROS 2, or as part of an
overall system transition to native DDS. Interoperability
with the ROS 2 ecosystem can be maintained continuously.

Wrapping It All Up
ROS 2 is a popular way to quickly create robotics systems

using distributed applications, but it may struggle with scal-
ability, performance, and operation in challenging environ-
ments—all places where DDS excels.

Fortunately, ROS 2 is implemented on top of DDS, mean-
ing that system developers can freely intermix ROS 2 and
DDS applications to solve specific ROS 2 shortcomings. Or
they can migrate their entire system to a higher performing,
open-standard DDS option without losing interoperability
with ROS 2 and its excellent ecosystem of tools and pack-
ages. Truly, the best of both ROS 2 and DDS is available now
for builders of robotic and autonomous systems.

To learn more, visit https://community.rti.com/ros.
Neil Puthuff is a senior automotive applications engineer at

Real-Time Innovations with a focus on automotive, ROS, and
grid modernization. Prior to joining RTI, he created processor
probes and replay debugging products at Green Hills Software.
Neil is a named inventor on more than a dozen U.S. patents.

Captions:

☞LEARN MORE @ electronicdesign.com | 4

https://docs.ros2.org/latest/api/rclcpp/
https://community.rti.com/ros
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

