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H
ardware virtualization using virtual machines 
(VMs) has several use cases in embedded systems, 
ranging from workload consolidation to running 
applications on legacy operating systems. Oper-

ating-system virtualization utilizing containers opens up an 
additional use case for enabling a DevSecOps (development, 
security, and operations) environment by packaging an appli-
cation’s dependencies with the application. Many differences 
exist between VMs and containers in performance, scalability, 
and portability, but this article will focus on security. 

All types of virtualization provide a basis for security with 
a goal of isolating software running in a VM or container 
from other VMs and containers. Different types of virtual-
ization solutions achieve isolation to varying degrees, and 
how tightly the isolation function is coupled to the virtual-
ization function also can impact security.

After reviewing the basic technology of VMs and con-
tainers in the first section, the second section compares the 
security posture of those solutions based on three key in-
dicators: the size of the trusted computing base (TCB), the 
number and the rate of Common Vulnerabilities and Ex-
posures (CVEs) uncovered, and the types of security cer-
tifications that have been achieved. The third section then 
examines how to apply those findings to increase security in 
a DevSecOps environment.

Overview of Virtualization Types
In hardware virtualization, the VMs are controlled by a 

virtual-machine monitor, more commonly referred to as a 

hypervisor. Each VM simulates the same underlying hard-
ware but can have a different guest OS. The hypervisor 
allocates a separate address space to each VM, which the 
hypervisor enforces using the CPU’s memory management 
unit (MMU). 

All of the software inside the VM executes as if it were 
running directly on the physical hardware isolated from 
other VMs and their software stacks. When a VM needs ac-
cess to some shared physical resource, such as the network, 
display, or disk drives, the hypervisor intervenes and con-
trols that access directly. 

Originally there were two types of hypervisors: Type 
1 hypervisors run directly on the physical host hardware, 
whereas Type 2 hypervisors run on top of an operating sys-
tem. From a security standpoint, Type 1 hypervisors execute 
in privileged kernel mode, while Type 2 hypervisors execute 
in user space. 

VMware ESXi and Xen Project are examples of Type 1 
hypervisors, and VMware Desktop is an example of a Type 2 
hypervisor. More recently, there are also hybrid hypervisors 
that combine elements of Type 1 and Type 2. For example, 
KVM is the virtualization layer in the Linux kernel, and it 
runs in kernel mode on bare metal. 

For real-time and embedded systems, Type 1 hypervisors 
are commonly reduced in size and functionality to fit within 
resource constraints of embedded systems as well as provide 
more determinism than a server or workstation hypervisor. 
Improving determinism is particularly important for hyper-
visors used in real-time systems since a Type 1 hypervisor is 
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the source of extra latency for every applica-
tion running in such a system (Fig. 1). That’s 
a critical issue for latency-sensitive real-time 
applications.

Type 2 hypervisors impose additional la-
tency for applications running in VMs be-
cause there are now three layers of software: 
the guest OS, hypervisor, and host OS. How-
ever, with a Type 2 hypervisor, not all applica-
tions must run in VMs on the hypervisor. This 
makes a lot of sense in a workstation setting, 
for example, when a Linux workstation needs 
to run a small percentage of its applications 
on a Windows OS. 

In that example, Linux applications run 
natively outside the hypervisor and at full 
performance. Similarly, in a real-time system, 
real-time applications can run directly on the 
real-time OS (RTOS), while only the non-re-
al-time applications incur the extra latency of 
running on a Type 2 hypervisor (Fig. 2).

Hybrid hypervisors aim to achieve the best 
of both approaches. For real-time embedded 
systems, INTEGRITY-178 tuMP from Green 
Hills Software uses a combination of Type 1 
and Type 2 approaches that separates the iso-
lation and virtualization mechanisms. 

As with a Type 1 hypervisor, the funda-
mental separation mechanisms run in kernel 
mode on bare metal. For INTEGRITY-178 
tuMP, that’s a hardened separation microker-
nel, which isolates groups of non-kernel soft-
ware into isolated partitions. However, the 
rest of the virtualization, mostly the hardware 
simulation, runs in user mode on top of the 
INTEGRITY-178 tuMP RTOS. 

Each virtualization layer instance runs in 
user mode inside of an isolated partition with 
a VM running on top of it (Fig. 3). This com-
bination yields a security-critical real-time 
hypervisor with advantages in both security 
and performance.

Containers virtualize the operating system 
running on the host system into isolated user-
space instances. All of the containers running 
on the same system share the services of a sin-
gle operating system kernel, but they can run 
different distributions (e.g., CentOS, RHL, 
Ubuntu). Though that makes the container 
lighter weight, it’s less flexible than VMs that 
can have completely different guest operating 
systems.

1. Type 1 hypervisors run directly on the hardware, and every application gets additional 

latency from the virtualization layer.

2. With Type 2 hypervisors, applications in VMs get extra latency from both the virtual-

ization layer and the host OS, but applications requiring the highest performance can 

give up the isolation of a VM to run directly on the host OS.

3. A security-critical hybrid hypervisor provides isolation to all applications, and only 

applications that need a guest OS pay the virtualization performance penalty.
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Although some operating systems, particu-
larly Linux, have native support for contain-
ers, the most commonly used container run-
time is Docker Engine (Fig. 4). Because the 
container image contains all of the application 
dependencies (e.g., programming language 
runtime and standard libraries), applications 
in containers developed on one system can 
execute on a different production system. 
Container development and runtime tools, 
like Docker, and container orchestration plat-
forms, such as Kubernetes, make it easy to up-
date software applications and form the basis 
for a DevSecOps architecture. But containers 
depend on support from the OS and are sus-
ceptible to vulnerabilities in the OS kernel. If 
the OS is Linux, that’s a very large number of 
vulnerabilities.

Size of the Trusted Computing Base
The security of a system depends on many components, 

including all of the hardware, the firmware, and each soft-
ware component. The virtualization solution is just one ele-
ment, but any software module running in privileged kernel 
mode has the highest security consequences. 

One principle of software security is that the likelihood of 
a breach is proportional to the size of the attack surface. The 
attack surface is the sum of all entry points and vulnerabili-
ties in a system that can be exploited to carry out an attack. 

Although virtualization solutions aren’t directly involved 
in limiting and securing entry points, they do play a role in 
limiting the spread of a breach by running application code 
in VMs or containers with some amount of isolation. Con-
versely, virtualization code adds to the total code that can 
contain vulnerabilities.

The effect of a successful attack depends on whether the 
breach occurred in the trusted computing base, or TCB, 
which is the set of hardware, firmware, and software that en-
forces the security policy. If part of the TCB is breached, the 
security properties of the whole system could be affected. 

The general goal is to minimize the size of the TCB and 
the number of interfaces to it so that the TCB can be veri-
fied more easily. If the TCB can be made small enough, it’s 
possible to evaluate its security formally. Formal verification 
uses mathematical proofs to show correct operation and is 
the strictest form of evaluation.

To achieve the smallest TCB, the software running in ker-
nel mode should implement only the four fundamental se-
curity policies required to support higher security function-
ality running in user mode. Those security policies are data 
isolation, control of information flow, resource sanitization, 
and fault isolation. 

The goal of reducing the software TCB to just the func-
tionality required for those four foundational security poli-
cies led to the concept of a separation kernel. A separation 
kernel divides memory into partitions using a hardware-
based memory-management unit (MMU) and allows only 
carefully controlled communications between non-kernel 
partitions. Although almost all kernels attempt to enforce 
isolation by leveraging hardware functionality, such as the 
MMU and input/output MMU (IOMMU), leveraging hard-
ware resources alone doesn’t guarantee isolation, let alone 
cover the other security requirements.

Looking at the TCB of different virtualization solutions, 
the TCB of a Type 1 hypervisor is generally smaller than 
an entire OS but larger than a pure separation kernel. The 
problem is that software running in kernel mode for a typi-
cal hypervisor provides not only the fundamental isolation 
required, but also full virtualization, including emulation of 
hardware. The amount of code required for that emulation 
can be huge, dramatically increasing the TCB. 

There’s no security reason why the hardware emulation 
must be included in the kernel, but Type 1 hypervisors in-
clude it anyway, mainly to improve performance. Some hy-
pervisors designed for embedded systems attempt to miti-
gate this by reducing functionality to reduce code size.

The TCB of a Type 2 hypervisor is really just the TCB of 
the host OS, since a Type 2 hypervisor runs in user space.  
If that’s a general-purpose OS, then the TCB is likely larger 
than a Type 1 hypervisor.

However, if the OS is designed for security like a separa-
tion kernel, then the TCB in a Type 2 system can be smaller 
than a Type 1 hypervisor. Similarly, a hybrid hypervisor built 
on a separation kernel has a TCB the size of the separation 
kernel.  Because a separation kernel is designed explicitly to 
minimize the TCB, it has the smallest TCB of any virtualiza-
tion solution.

4. A container runtime such as Docker Engine runs on top a host OS, but applications 

can run outside of containers as well.
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For containers running on top of 
Linux, the TCB is an order of magni-
tude larger than a Type 1 hypervisor 
TCB. Looking at just the amount of 
unique code used for virtualization, 
Linux containers utilize the entire 
syscall interface, which is about 10X 
larger than the typical hypercall in-
terface of a hypervisor. 

The full TCB includes all parts of 
Linux running in kernel mode. The 
5.11 release (2021) of the Linux ker-
nel had more than 30 million lines 
of code, with about 4 million lines of 
code for the core functions and the 
rest as drivers (Fig. 5). Docker can 
add to the TCB as well because the Docker daemon usually 
runs as root.

Critical Vulnerabilities Uncovered
The Common Vulnerabilities and Exposures (CVE) da-

tabase lists publicly known information-security vulner-
abilities and exposures. A vulnerability is a weakness in the 
code that, when exploited, results in a negative impact to 
confidentiality, integrity, or availability. The number of vul-
nerabilities reported has been increasing each year, with 
the National Vulnerability Database (NVD) maintained by 
NIST showing over 20,000 reported in 2021.

Given the numerous vulnerabilities continually being 
found, relying on patches can’t be the primary mitigation. 
Many vulnerabilities are revealed to have been in the code 
for multiple years and multiple generations of software. 
Even after a vulnerability is discovered, it takes time to cre-
ate a patch and more time to get the patch distributed and 
installed. 

Many embedded systems aren’t easily updated, and the 
end user may not know all of the software components in 
the system, let alone that a patch should be applied. Even if 
installed in a timely fashion, some patches do not fix the en-
tire vulnerability. “Spectre” is an example of a vulnerability 
that hasn’t been fully mitigated by a patch, even though it 
was disclosed in 2018. 

Looking at virtualization solutions, container-based sys-
tems have the largest number of CVEs because the contain-
ers depend on the underlying OS. Containers generally run 
on the Linux kernel, which has a very sizable code base with 
over 3,400 vulnerabilities found so far. 

More vulnerabilities are continually being discovered, 
with an average of one every other day in 2021. Of those, 
half had a severity rating of High or Critical (e.g., privilege 
escalation, arbitrary code execution). In addition, systems 
using containers typically add a container runtime engine 

like Docker, which runs as root and 
introduces additional vulnerabilities 
and configuration security challenges.

Type 1 hypervisors also have a sig-
nificant number of CVEs. For exam-
ple, Xen has over 600 vulnerabilities in 
the NVD, with nearly 20 CVEs report-
ed in 2021. Hypervisor vulnerabilities 
are many and varied, such as VM es-
cape, hyperjacking, denial-of-service 
(DoS), and side-channel attacks. Some 
of these vulnerabilities can be very se-
rious because once the hypervisor se-
curity is breached, attackers can access 
all VMs, all applications, and all of the 
application data inside of them.

Hybrid hypervisors based on a separation kernel fare 
much better. For example, neither the INTEGRITY-178 
tuMP multicore separation kernel nor the INTEGRITY-178 
single-core separation kernel has had any security vulnera-
bilities reported against it since it was first deployed in 2002.

Security Certifications
Certification to government-defined security standards 

provides strong evidence of the level of security assurance 
and functionality of a product. Two widely used security 
certifications are the Common Criteria and the Risk Man-
agement Framework.

Common Criteria
The security robustness of computer hardware and 

software platforms can be specified by evaluation to the 
“Common Criteria for Information Technology Security 
Evaluation” (ISO/IEC 15408). Common Criteria targets of 
evaluation (TOE) are typically evaluated against a govern-
ment-defined protection profile that includes both func-
tional and assurance requirements. 

Evaluations can be done to different levels of depth and 
rigor, called Evaluation Assurance Levels (EAL), with EAL1 
being the least rigorous and EAL7 being the most rigorous. 
Security assurance requirements and security functional 
requirements are grouped together into a protection profile 
tailored to a particular type of product.

Starting with EAL2, each of those EALs requires a vulner-
ability analysis to a specific level. EAL5 is the first level that 
protects against attackers of “moderate” potential, and it’s 
only at EAL6 that the resistance to penetration attacks rises 
to “high” attack potential. 

The Common Criteria goes on to say that it’s not econom-
ically feasible to retrofit security into an existing product 
line and achieve higher than EAL4. As a result, products that 
didn’t design security in from the beginning can’t provide 
resistance to attackers with even a moderate attack potential.

5. The size of the TCB can range from under 20K 

lines of code for a hybrid hypervisor based on a 

separation kernel to more than 20M lines of code 

for containers running on Linux and Docker.
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For example, consider the Protection Profile for General 
Purpose Operating Systems (GPOS-PP). The GPOS-PP 
wasn’t designed for a specific EAL, but it’s based mainly on 
EAL2 requirements. Additional protection profiles were 
defined to enhance certain aspects of OS system security. 
Examples include the Controlled Access Protection Profile 
(CAPP) and the Labeled Security Protection Profile (LSPP). 
The assurance requirements for both of those protection 
profiles are specified at EAL3.

The only government-defined protection profile ever de-
signed for High Robustness or EAL6 and above that applies 
to operating systems or hypervisors is the “U.S. Government 
Protection Profile for Separation Kernels in Environments 
Requiring High Robustness” (SKPP). The NSA-defined 
SKPP was published in 2007. Although U.S. certification of 
commercial products to the SKPP ceased in 2011, govern-
ment programs of record that need high robustness con-
tinue to require meeting the security objectives in the SKPP.

Considering Common Criteria applied to vitalization 
environments, some versions of Linux that include Linux 
container functionality add in the SELinux security options 
and have been certified to EAL4+ with CAPP and LSPP. As 
mentioned above, SELinux has many vulnerabilities discov-
ered each year. That’s not surprising given that the CAPP 
and LSPP explicitly state those protection profiles are only 
“appropriate for an assumed non-hostile and well-managed 
user community requiring protection against threats of in-
advertent or casual attempts to breach the system security.” 
It’s only starting with EAL5 that hostile threats are addressed 
to any degree.

Very few Type 1 hypervisors have been certified to the 
Common Criteria. Only VMware vSphere 5.0 has been 
certified, and that was to EAL4+ but not to a government-
defined protection profile. 

The INTEGRITY-178 separation kernel and RTOS have 
been certified multiple times to EAL6+ and “High Robust-
ness” using the SKPP. No other commercial operating sys-
tem or hypervisor has been certified to EAL6+ or High Ro-
bustness. 

As part of certification to the SKPP, INTEGRITY-178 un-
derwent independent vulnerability analysis and penetration 
testing by the NSA to demonstrate that it doesn’t allow hos-
tile and well-funded attackers with high attack potential to 
violate the security policies. Extending that security design 
to multicore processors, INTEGRITY-178 tuMP continues 
to meet the SKPP’s rigorous set of functional and assurance 
requirements. The hybrid hypervisor solution builds upon 
that secure kernel by adding virtualization in an isolated 
user-space partition.

Risk Management Framework
The Risk Management Framework (RMF) is a U.S. federal 

government policy and set of standards developed by the 

National Institute of Standards and Technology (NIST) for 
the assessment and authorization of mission systems. The 
overview document is NIST SP 800-37, “Risk Management 
Framework for Information Systems and Organizations: A 
System Life Cycle Approach for Security and Privacy.” That 
document defines six steps: Categorize information systems, 
Select security controls, Implement, Assess, Authorize, and 
Monitor. 

One of the most challenging steps is selecting the security 
controls. NIST SP 800-53 “Security and privacy controls for 
Federal Information Systems and Organizations” lists more 
than 800 security controls to select from, many of which 
don’t apply to embedded systems. It’s up to the program to 
go through all of the RMF controls and determine which 
apply. 

Note that the RMF is used to certify whole systems, in-
cluding hardware, firmware, and software. An individual 
component like virtualization can only offer help in meeting 
a subset of requirements. For example, an operating system 
or hypervisor that provides secure audit capability can con-
tribute to the RMF audit capability (AU family of controls).

RMF controls are applied to functions or subsystems and 
assessed at an impact level (low, moderate, or high) for each 
of confidentiality, integrity, and availability. For example, a 
mission computer for a helicopter could be assessed as re-
quiring high confidentiality, high integrity, and moderate 
availability.

Many risk-management and data-management platforms 
can help automate some of the burdens of meeting the se-
lected security controls. Looking more specifically at vir-
tualization, some hypervisors claim to aid in meeting RMF 
controls without providing any specifics. Docker provides a 
broad set of guidance on which security controls apply to its 
Docker Enterprise Edition. 

The INTEGRITY-178 tuMP hybrid hypervisor doesn’t of-
fer direct guidance on meeting the RMF. Instead, it provides 
detailed information on meeting the much more rigorous 
security objectives defined in the SKPP. As a result, INTEG-
RITY-178 tuMP provides security above and beyond the 
RMF.

How to Use Containers More Securely
For organizations that want to use containers to imple-

ment a DevSecOps environment, the challenge is finding a 
way to secure the containers and the underlying OS. Some 
DevSecOps environments attempt to improve container se-
curity by using “hardened containers,” which rely primarily 
on scanning for known vulnerabilities and compliance to 
security policy. 

However, just as you can’t “inspect in” quality, no amount 
of scanning will change the inherent security of a set of 
software. Beyond that, hardened containers don’t attempt 
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to address the most significant security issue, 
namely the vulnerabilities in the underlying 
OS.

When Linux is the underlying OS, the first 
option is to beef up the security posture of the 
Linux kernel using security patches such as 
SELinux. SELinux enforces mandatory access 
control policies that restrict user programs 
and system services to the minimum privilege 
necessary. 

SELinux is effective in preventing the ex-
ploitation of some access control vulnerabili-
ties, such as the RunC vulnerability (CVE-
2019-5736) that permitted containers in the 
Docker solution to gain root privileges on the host machine. 
However, SELinux is only a partial solution because 1) SE-
Linux doesn’t protect against other types of vulnerabilities in 
the Linux kernel or the kernel’s security configuration, and 
2) SELinux has its own vulnerabilities, with 15 discovered 
in 2021 alone.

A second option is to run containers inside a VM, which 
can increase security to some degree. A VM provides a high-
er level of isolation, while the container provides convenient 
packaging and a delivery mechanism for applications to en-
hance DevOps. 

Running inside a VM removes Linux and the container 
runtime engine from the TCB, but there’s a performance pen-
alty for running OS virtualization on top of hardware virtual-
ization. If the VM hosting the containers is running on a Type 
1 hypervisor, you have traded a massive TCB for a large TCB 
and are still susceptible to hypervisor-based attacks.

A more secure solution is to run containers in a partition 
of a hardened separation microkernel, such as INTEGRI-
TY-178 tuMP (Fig. 6). Other partitions can hold applica-
tions at different, mixed security levels. Running the con-
tainer system in a partition protects the containers from 
applications running in other partitions and vice versa. 

Any applications requiring low latency, though, would 
be better to run in a separate partition without either the 
container-level virtualization or the VM-level virtualization. 
Those low-latency applications can then run directly on a 
bare-metal real-time operating system built on the hardened 
separation kernel.

Conclusion
Although all forms of virtualization add some level of se-

curity compared to a general-purpose operating system, the 
level of security varies greatly. Containers provide a basic 
level of isolation for applications and processes, but they rely 
on an operating system and a container engine that have a 
large attack surface and many new vulnerabilities found 
each year. Type 1 hypervisors for embedded systems have 

a smaller attack surface than Linux containers. However, 
they’re generally still too large to evaluate fully for security 
vulnerabilities.

By separating the isolation and virtualization require-
ments, the INTEGRITY-178 tuMP separation microkernel 
creates a security-critical real-time hypervisor to maximize 
security and optimize system performance. The separation 
kernel presents the smallest attack surface and can be fully 
evaluated for isolation, security properties, and correctness. 

The microkernel’s virtualization layer lies outside the 
TCB and is used only for the applications that need it, leav-
ing the high-assurance applications to run directly on the 
RTOS. INTEGRITY-178 tuMP meets the requirements of 
the NSA-defined Separation Kernel Protection Profile for 
High Robustness.

A secure system can employ containers as a software 
packaging and delivery platform for DevSecOps if another 
solution provides the isolation. Linux containers and Dock-
er can run on top of the virtualization layer of the INTEG-
RITY-178 tuMP RTOS while the separation microkernel 
provides the certified isolation. 
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6. For maximum security, containers can run in a secure partition of a separation 

microkernel.
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