
By DR. GAVIN WATKINS, Toshiba Europe Limited

O
ften during product development, complex test
signals are needed beyond those available from
common signal or function generators. To meet
this requirement, arbitrary signal generators

(ARBs) consisting of a fast memory coupled to a digital-to-
analog converter (DAC) were developed.

ARBs come in many shapes and sizes dependent on the
sample rate, number of channels, and digital resolution. For
some applications, one or two analog outputs are sufficient,
but occasionally a combination of synchronized analog and
digital outputs are required. One such application is driving
contemporary high-efficiency radio-frequency (RF) power
amplifiers (PAs) or transmitters with 4G Long Term Evolu-
tion (LTE) signals.

In this example, two analog outputs are required to drive
the in-phase (I) and quadrature (Q) inputs of an RF modu-
lator and several digital outputs for switching sections of the
transmitter. A recent prototype digital PA needed just such

an ARB.1 For that, a platform using an Arduino Mega2560
was developed.

The Arduino Mega2560 is based around the ATmega2560
8-bit, 16-MHz microcontroller. It has a total of 54 general-
purpose input/output (GPIO) pins configured into six 8-bit
and one 6-bit ports. Data must be called separately from
memory for each port. Therefore, new data appears on each
port at different times, so they’re unsynchronized.

In the prototype mentioned above,1 this was be over-
come with external 74HC373 transparent latches between
the Arduino and the DACs and digital outputs. They were
all enabled together after each port had been updated. This
resulted in a sample rate of 457 ksamples/s. To increase the
sample rate, a new ARB has been developed based on an
Arduino Due, offering up to 8.4 Msamples/s.

Hardware Description
The Arduino Due, based on the 32-bit ATSAM3X8E, al-

lows multiple 8-bit DACs and digital outputs to be mapped
onto a single port. This ensuring all outputs are synchro-
nized. Sample rate is dramatically improved as only one
lookup-table (LUT) call is made from memory. The Ardui-
no Due also runs at a higher clock rate of 84 MHz.

Although 32-bit, none of the four ports (A to D) available
on the ATSAM3X8E’s pins map to all 32 bits. Of the four
ports, C with 24 bits available is the most useful. A simpli-
fied schematic is shown in Figure 1. Along with the digital
outputs, a trigger output also is included.

DAC Requirements
The ATSAM3X8E includes internal DACs. However,

writing to them takes many clock cycles, resulting in a low
sample rate. For this reason, external DAC0801s are used.
Although these are quite old, they’re still available and easy
to interface. Their datasheet quotes a settling time of 100 ns,
consisting of the DAC slewing time and accounting for any

Build a Flexible Arbitrary
Signal Generator
Discover how to produce a multiple output arbitrary signal generator cheaply and
quickly with low-cost, hobbyist-level microcontroller development boards.

Micro-
processor

Memory

Port A

Port B

Port C

Port D

(32)

(23)

(14)

(24)

(11)

Buffers

DAC

DAC

(8)

(8)

(8)

ATSAM3X8E (Arduino Due)

(Ch A)

(Ch B)

(7 Dig)

(Trig)

1. The simplified schematic of the ARB includes the blocks within the

Arduino Due and those on the shield PCB

☞LEARN MORE @ electronicdesign.com | 1

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

ringing at the output to settle.2 The slewing time is a fac-
tor of the DAC output current and its load impedance. The
DAC0801 has complementary current sink outputs (pins 2
and 4).

The datasheet for the DAC0801 suggests op-amp active
current to voltage (I/V) converters as an output stage. This
was found to introduce excess ringing, so passive I/V con-
verters were used instead. With a 1-kΩ resistive load (RL),
the slew rate was 30 V/μs, equivalent to a rise and fall time
of 42 ns. The schematic of the DAC and op-amp interface is
shown in Figure 2.

The peak output current of the DAC0801 is set at 2.13 mA
by the 4k7 (4.7k) resistors on pins 14 and 15 when a ±10-V
power supply is used. A 1k1 (1.1k) resistor tied to 0 V and
two 4k7 resistors in series (9k4, or 9.4k) to +10-V positive
supply rail add an offset so that the output voltage at pin 4
swings positive and negative around 0 V. This is a high im-
pedance port, so an op amp with a gain of 2 V/V buffers the
output to drive 2 V p-p into a 50-Ω load.

In the prototype, a TL071 proved optimal in terms of
bandwidth and ringing. The TL071 has a unity-gain band-
width product of 3 MHz, reduced to 1.5 MHz with a gain of
2 V/V. Other op amps may provide a better combination of
bandwidth, slew rate, and output current.

Programming
Arduinos are very easy to program in C with their free

integrated development environment (IDE). The Arduino
Due does however use some different commands to those of
the more common varieties when directly accessing ports.
The following commands setup port C of the Due for direct
access:

PIOC→PIO_PER
and

PIOC→PIO_OER
PIOC→PIO_ODSR is then used to write data to the port as

shown in the code listing in Figure 3.
There are a number of “eccentricities” in this code.

First, the loop that accesses the LUT and sends it to Port
C runs in the setup, not in the main loop. For some reason
it ran quicker, taking only 10 instructions and resulting in
8.4-Msample/s output rate.

The LUT allocations are accessed by the variable count,
which is a 32-bit integer. This is masked (by ANDing) with
FF (256) in the example shown here. Increasing this to FFF
would allow for the addressing of a 4096 allocation LUT, etc.
Restricting the LUT to powers of 2 simplifies (and hence
speeds up) the code. For other values, an IF or FOR loop
could be used to reset count at any value.

The code listed in Figure 3 generates two quadrature sine
waves on the two DAC outputs (Ch A and Ch B) at 32.8125
kHz (8.4 Msamples/s / 256). count is incremented by 1 on
each iteration. Increasing the increment value would in-
crease the sine-wave frequency similar to direct digital syn-
thesis.3

Another eccentricity of the code is including the noInter-
rupts command to disable interrupts even though none were
set. If not included, the compiler appears to enable an inter-
rupt by default, resulting in jitter on the output waveform. If
a lower sample frequency is desired, though, the delayMicro-
seconds command can be included. In this case, noInterrupts
should be commented out.

Data Generation
The data for all ports and the trigger signal are stored in a

single LUT (Portvalues in Fig. 3). For Port C, the bits avail-
able on the external pins are bits 1-8 for Ch A, bits 12-19
for Ch B, bits 21-26 for the digital interface, and bit 28 as a
trigger. These are generated individually and then mapped
into a 32-bit word by multiplying the individual values by an
offset and adding them together, for example:

Word32 = 228*Trigger + 221*Digital + 212*DAC2 + 21*DAC1

The data can be generated in a spreadsheet like Excel
or OpenOffice, or programming language like Python or
MATLAB. If using a spreadsheet, one useful tip is the “&”
function to combine the values of individual cells into a
single cell of comma separated values that can be copied and
pasted into the Arduino code. LUTs are normally displayed
as a square array, i.e., 16 columns by 16 rows for 256 values
(like in Fig. 3), instead of a single column.

For example, the “&” command can be used as such:
=Y2&”, “&Y3&”, “&Y4&”, “&Y5&”, “&Y6&”, “&Y7&”,

“&Y8&”, “&Y9&”, “&Y10&”, “&Y11&”, “&Y12&”, “&Y13&”,
“&Y14&”, “&Y15&”, “&Y16&”, “&Y17&”, “

DAC0801

+10V

4k7

4k7
1k 1k1

1k5
1k5

51

9k4
(2x 4k7)

0V

V
OUT

Op-Amp
4

2

14

15

2. The DAC output interface and op-amp buffer is shown where all

resistor values are in ohms.

☞LEARN MORE @ electronicdesign.com | 2

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

This groups together the values from
cells Y2 to Y17 into a single cell so that
when pasted into the Arduino IDE, they
appear as a single row of 16 columns.

Results
To verify the concept, an Arduino

Due “shield” was produced. This was
fabricated on standard FR4 substrate
using through-hole DIL components.
DIL components incur stray inductance
and capacitance when operating in the
MHz region, but they make it possible
to easily modify the design. A surface-
mount implementation would probably
produce better results than those pre-
sented here.

A screen capture of the two quadra-
ture outputs generated by the code in
Figure 3 is shown in Figure 4. There’s
no output lowpass filter after the DACs
other than the frequency response of
the TL071. Additional passive filter-
ing would reduce the output switching
noise.

More complex waveforms than sinu-
soid waves also can be generated—for
example, the baseband complex data
for a 1.4-MHz LTE signal consisting of
16,384 32-bit words (64 kB). This signal
was processed in Python into an array
of 1,024 rows and 16 comma separated
columns.

The 1.4-MHz LTE signal has a
7.68-Msample/s rate. An additional in-
struction was included in the Arduino
loop, resulting in 11 instructions and a
7.64-Msample/s rate. Further, count was
ANDed with 4FFF. The frequency do-
main of the in-phase (I) baseband signal
is depicted in Figure 5.

The 1.4-MHz LTE signal includes
guard channels, resulting in an actual
RF bandwidth of 1.08 MHz (consisting
of six 180-kHz resource blocks). The
baseband bandwidth is half of this—
504 kHz—as clearly shown in Figure 5.
There’s substantial spectral regrowth in
Figure 5, partially due to DAC nonlin-
earities and spurious products intro-
duced by the system.

Another ARB application is to di-

int count = 0;

//Quadrature Sinewaves, but with the flip over for the incorrect DAC
wiring
int Portvalues[256] = { 3389017602, 389017986, 391114946, 391115042,
390590562, 390590946, 392687762, 392950098, 392949810, 392425906,
393081074, 394653834, 394654026, 394916298, 394391722, 394719594,
394981402, 396554650, 397209818, 396947770, 396423290, 396849402,
397111558, 397242438, 396718278, 396456230, 396784038, 396521702,
396652566, 398487958, 398963030, 398701014,
398831798, 399421558, 399159542, 399290382, 396406926, 396832846,
397226190, 396963886, 396767406, 396505518, 396898670, 396873966,
396611614, 397005086, 396808606, 397201502,
394318174, 395006174, 394612798, 395202878, 394940606, 394547390,
392663486, 393056382, 392270206, 392860030, 392466686, 391057662,
390271230, 390664702, 390468094, 388764158,
387977726, 388227582, 386523646, 386327038, 386719998, 385933566,
384524542, 384131454, 384721278, 381837438, 382230974, 380346558,
379953342, 379691326, 378183742, 377790686,
376381790, 375595102, 375988638, 373694750, 374087710, 371728622,
371704174, 370000302, 369737902, 369541166, 367182030, 367575118,
365904014, 365117454, 363151606, 362889334,
361382070, 361513430, 359154006, 359629206, 357269526, 357400806,
355041702, 353272102, 353009862, 350388294, 350519558, 348684538,
349110394, 346489146, 344129754, 344785306,
342163482, 342425962, 340656298, 338035146, 338297162, 336199818,
335675634, 334234034, 331612210, 331612498, 329777298, 329777634,
327680098, 325058850, 325058754, 322961794,
54525954, 52428924, 50331964, 50331868, 48759196, 46661660, 46661996,
44302508, 44302796, 42729548, 39977228, 40501620, 38404276, 38142004,
36569428, 34144404,
33882596, 32309348, 31654180, 29819076, 30343556, 27820292, 27558136,
25330104, 25854264, 26116312, 25788504, 23953688, 23822824, 24084584,
23609512, 23871528,
21643592, 23150984, 23413000, 23282160, 24068464, 23642544, 25346352,
25608656, 25805136, 26067024, 27771024, 27795728, 30155232, 29761760,
32055392, 31662496,
34545824, 33857824, 36348352, 37855424, 38117696, 40608064, 40394816,
42099072, 44982400, 44392576, 46883072, 46194944, 49078528, 50782208,
50978816, 52682752,
54530048, 55316480, 57020416, 57217024, 58921216, 61804800, 61116672,
63606912, 63017088, 65900928, 67604544, 67391808, 69882176, 70144192,
71651776, 74141984,
73453728, 76337568, 75944032, 78237920, 79942112, 80204048, 82325648,
81932368, 84291920, 84488656, 86847792, 88551856, 88125808, 91009520,
90878216, 93237640,
92647752, 94613544, 94875816, 96497768, 96760296, 98726168, 98988120,
100757720, 101019960, 101544376, 103510264, 103248132, 104919428,
105443524, 107802916, 107147364,
107672036, 109506708, 109179220, 111800372, 111538356, 111538548,
114159884, 113504332, 116126156, 116125868, 115863916, 117960732,
117961116, 118485212, 118485308, 120582268
 };

void setup() {
 // put your setup code here, to run once:
 noInterrupts(); // Always a good idea to include even if interrupts are
not used
 PIOC->PIO_PER = 0x17EFF1FE; // Configure PORTC to PIO controller
 PIOC->PIO_OER = 0x17EFF1FE; // Enable PORTC to output
 //bits 1-8 for I, bits 12-19 for Q, bits 21-26 for digital and bit 28
for trigger, b00010111111011111111000111111110
 //Portvalues are (2^28)*Trig + (2^21)*Dig + (2^12)*Q + 2*I can be
calculated in Excel or other software.

 start:
 // put your main code here, to run repeatedly:
 count = count + 1;
 //delayMicroseconds(1); // to slow things down, if used, comment out
the noInterupts above
 count = count & 0x000000FF; // set to the maximum value of LUT up to
256kB Arduino Due in 2^N
 PIOC->PIO_ODSR = Portvalues[count];
 goto start;

}

void loop() {
 // Works faster if the main loop is in the setup for some reason
}

3. This code listing generates quadrature 32.8125-kHz sinusoid waves.

☞LEARN MORE @ electronicdesign.com | 3

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

rectly synthesize modulated RF carriers
without any upconversion. This is often
promoted with very-high-speed (>10
Gsamples/s) ARBs for generating sig-
nals with multi-GHz bandwidth at GHz
carrier frequencies.4

Figure 6 shows a simpler example
involving a triple tone test. The three
tone frequencies are 984.375 kHz,
1.00078125 MHz, and 1.0171875 MHz.
These three resulting frequencies (Fr)
were calculated with:

Fr = Fs * n / LUTs
where Fs is the sampling frequency, n

is a whole number to avoid discontinui-
ties—reducing spurious products—and
LUTs is the LUT size. Here, Fs was 8.4
Msamples/s; n was 60, 61, and 62; and
LUTs was 512. Figure 6 shows the spec-
trum. Even with all of the harmonically
related spurious products, they are −38
dB relative to the three tones. A higher-
resolution DAC would offer greater dy-
namic range, and hence lower spurious
products.5

Conclusion
A technique using an Arduino Due

to generate arbitrary waveforms with
multiple analog and digital outputs is
discussed in this article. It’s seen as a
starting point for exploration of what’s
possible with low-cost, hobbyist-level
electronic development boards. Prom-
ising results are presented for the gen-
eration of sinusoid waves, LTE 4G base-
band signals, and three tone tests.

Alternative platforms running at
higher clock frequencies like the Ardu-
ino Portenta H7, Raspberry Pi RP2040,
Raspberry Pi Zero 2 W, or ESP32 could
provide higher sampling frequencies
and better results. Similarly, so could
higher-resolution DACs and better
op-amp buffers. The next phase of this
research is to combine the LTE signal
generator with a low-cost quadrature
modulator development board to gen-
erate 4G signals for testing transmitter
architectures.

Gavin Watkins is an electronic en-
gineer from Bristol, U.K., and lifelong 6. This oscilloscope screen capture shows a triple tone test in the frequency domain.

4. This oscilloscope screen capture of quadrature sinusoid wave was produced from code

listed in Figure 3.

5. Shown is an oscilloscope screen capture of 1.4-MHz LTE I channel baseband signals in the

frequency domain.

☞LEARN MORE @ electronicdesign.com | 4

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

hardware hacker. He works mainly with power amplifiers
and other aspects of radio-frequency engineering. In his spare
time, he is happiest noodling around with audio electronics
and vintage test equipment in his home lab.

References
1. Watkins, Gavin, “A Digital Power Amplifier for 32-QAM,”
51st European Microwave Conference, 2022.
2. Williams, Jim, “30 Nanosecond Settling Time Measure-
ment for a Precision Wideband Amplifier,” Linear Technol-
ogy Application Note 79, Sep. 1999.
3. Frenzel, Louis E., “DDS Basics,” Electronic Design, June
26th, 2008.
4. Keysight Technologies Inc., “High Speed Arbitrary Wave-
form Generator,” Microwave Journal, Oct. 24, 2014.
5. McHugh, Brendon, “Evaluating ADC and DAC Perfor-
mance Characteristics,” Electronic Design, May 25, 2021.

☞LEARN MORE @ electronicdesign.com | 5

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

