
By RAFAEL TAUBINGER,
Technical Marketing Specialist, IAR Systems

The RV32I is the base instruction set that can get the
standard extensions listed in Figure 1, such as:

• M (Integer Multiplication)
• A (Atomic Instructions)
• F (Single Floating Point)
• D (Double Floating Point)
• C (Compressed Instructions)
• B (Bit Manipulations)
• and so on….

Most extensions (Fig. 1) are ratified or frozen, but
new ones are currently being worked on. An example of
supported extension in various cores can be seen in Figure 2.

If we take the generic device RV32, we can recognize that
it supports M, F, D, and C. C (Compressed Instructions)
reduces static and dynamic code size by adding short 16-
bit instructions for operations, resulting in average 25%-
30% code-size reduction, and leading to lower power
consumption and memory use. In addition, the RV32E base
instruction set (embedded) is designed to provide an even
smaller base core for embedded microcontrollers with 16
registers.

Designers are free to implement their own extensions
for specific needs, e.g., machine learning, low-power
application, or optimized SoC for metering and motor
control. The purpose of the standard extensions or custom
extension is to achieve faster response time from calculations
and processing performed in hardware that require mostly
one or just a few cycles.

Why Professional Tools for RISC-V?
With the growth of RISC-V, the need arises for professional

tools that can take full advantage of the core features and
extensions. A well-designed and optimized SoC also should

run the best optimized code so that companies can innovate
fast, have outstanding products, and derive the best cost
benefit out of it.

When it comes to code density, every byte that can
be saved counts. Professional tools help to optimize the
application to best fit the required needs. By optimizing the
application, customers will be able to save money by using
devices with smaller memory or aggregate value by adding
functionality to the existing platform (Fig. 3).

A professional compiler for RISC-V can generate, on
average, 7%-10% smaller code when compared to other
tools.

Writing Compiler-Friendly Code for Better
Optimizations

An optimizing compiler tries to generate code that’s both
small and fast by selecting the right instructions in the
best order for execution. It does so by repeatedly applying
a number of transformations to the source program. Most
optimizations follow mathematical or logical rules based
on a sound theoretical foundation. Other transformations
are based on heuristics, where experience has shown that
some transformations often result in good code or open up
opportunities for further optimization.

So, the way you write your source code can determine
whether an optimization can be applied to your program
or not. Sometimes small changes in the source code could
significantly impact the efficiency of the code generated by
the compiler.

Trying to write your code on as few lines as possible, using
?:-expressions, postincrements, and comma expressions to
squeeze in a lot of side effects in a single expression, will not
make the compiler generate more efficient code. The best
hint is to write your code in a style that’s easy to read.

Techniques to Minimize
Code Footprint in RISC-V-
Based Apps
In this article, we’ll look how developers can help the compiler make better decisions
about what to do with their code to achieve optimizations in RISC-V-based applications.

☞LEARN MORE @ electronicdesign.com | 1

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

1. These are the standard exten-

sions for the RISC-V ISA. (Courtesy

of Wikipedia - https://en.wikipedia.

org/wiki/RISC-V)

2. Standard extension support in

the compiler is specified by these

selections.

☞LEARN MORE @ electronicdesign.com | 2

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

Developers can help the compiler make better decisions
by paying attention to the following hints in the source code:

1. Make a function call only once. A compiler generally
has difficulty looking into common subexpressions because
the subexpressions can have side effects that the compiler

may not know a priori if they’re necessary. Hence, the
compiler will make multiple calls to the same function when
instructed to do so, which wastes code space and execution
overhead. It’s better to assign the function to a variable
(which will most likely be stored in a register) and perform

operations while it’s in an easily accessed
register (Fig. 4).

2. Pass by reference rather than by
copy. When you pass a pointer to a
primitive rather than the primitive it-
self, you save the compiler the overhead
of copying that primitive somewhere
in RAM or in a register. For a large ar-
ray, this can save quite a bit of execu-
tion time. Passing by copy will force the
compiler to insert code to copy the con-
tents of the primitive.

3. Use the correct data size. Some
MCUs like an 8051 or AVR are 8-bit mi-
cros; some like the MSP430 are 16-bit;
and some like Arm and RISC-V are 32-
bit. When using an “unnatural” size for
your core, then the compiler must create
extra overhead to interpret the data con-
tained therein, e.g., a 32-bit MCU will
need to do shift, mask, and sign-extend
operations to get to the value needed to
perform its operation. It’s therefore best
to use the natural size of the MCU for
your data types unless there’s a compel-
ling reason not to, i.e.. doing I/O. You
also need a precise number of bits, or
bigger types (such as a character array)
would take up too much memory.

4. Using signedness appropriately.
The signedness of a variable can affect
the code that’s generated by the com-
piler. For example, division by a nega-
tive number is treated differently (by
the rules of the C language) than that
for a positive number. Ergo, if you use a
signed number that will never be nega-
tive in your application, you can incur
an extra test-and-jump condition in
your code that wastes both code space
and execution time. In addition, if the
purpose of a variable is to do bit-ma-
nipulation, it should be unsigned or you
could have unintended consequences
when doing shifting and masking.

5. Avoid becoming a castaway. C will
often perform implicit casts (e.g., be-

4. The compiler may be able to optimize redundant calls, but it’s better to write the code

properly.

3. Compiler optimization transformations can be selectively enabled.

5. Avoid becoming a castaway by using the correct cast.

☞LEARN MORE @ electronicdesign.com | 3

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

tween floats and integers and between ints and long longs)
and these are not free. Casting from a smaller type to a big-
ger type will use sign extend operations, casting to and from
a float will introduce the need for the floating-point library
(which can dramatically increase the size of your code).
Naturally, you should avoid making explicit casts as much as
possible to sidestep this extra overhead. This problem can be
easily seen when a desktop programmer who is accustomed
to using ints and function pointers interchangeably makes
the jump to embedded programming (Fig. 5).

6. Use function prototypes. If a prototype doesn’t exist,
then the C language rules dictate that all arguments must be
promoted to an integer and—as previously discussed—this
can link in unnecessary overhead from a runtime library.

7. Read global variables into temporary variables. If you’re
accessing a global variable several times within a function,
you might want to read it into a local temporary variable.
Otherwise, every time you access this variable, it will need
to be read from memory. By putting it into a local temporary
variable, the compiler will probably allocate a register to the
value so that it can more efficiently perform operations on
it (Fig. 6).

8. Refrain from inlining assembly. Using inline assembly
has a very deleterious impact on the optimizer. Since the op-

timizer knows nothing about the code
block, it can’t optimize it. Moreover, it’s
unable to do instruction scheduling of
the handwritten block since it doesn’t
know what the code is doing (this can
be especially damaging to DSPs). On
top of that, the developer must inspect
the handwritten code each time to make
sure that it’s correctly interspersed in
the optimized C-code so that it doesn’t
produce unintended side effects. The
portability of inline assembler is very
poor, so it will need to be rewritten (and
its ramifications understood) if you ever
decide to move it to a new architecture.
If you must inline assembler, you should
split it into its own assembler file and
keep it separated from source.

9. Don’t write clever code. Some de-
velopers erroneously believe that writ-
ing fewer source lines and making clev-
er use of C constructions will make the
code smaller or faster (i.e., they’re doing
the compiler’s job for it). The result is
code that’s difficult to read, impossible
to understand for anyone but the per-
son who originally wrote it and harder
to compile. Writing it in a clear and

straightforward manner improves the readability of your
code and helps the compiler to make more informed deci-
sions about how best to optimize your code.

For example, assume that we want to set the lowest bit of
a variable b if the lowest 21 bits of another variable are set.
The clever code uses the ! operator in C, which returns zero
if the argument is non-zero (“true” in C is any value except
zero), and one if the argument is zero. The straightforward
solution is easy to compile into a conditional followed by a
set bit instruction, since the bit-setting operation is obvious
and the masking is likely to be more efficient than the shift.
Ideally, the two solutions should generate the same code.
The clever code, however, may result in more code since it
performs two ! operations, each of which may be compiled
into a conditional (Fig. 7).

Another example involves the use of conditional values in
calculations. The “clever” code will result in larger machine
code since the generated code will contain the same test as
the straightforward code and adds a temporary variable to
hold the one or zero to add to str. The straightforward code
can use a simple increment rather than a full addition and
doesn’t require the generation of intermediate results (Fig.
8).

10. Access structures in order. If you order your structure

8. Don’t Write Clever Code 2: You’re not making something more efficient by writing bad code.

6. This is the right way to handle global variables and registers.

7. Don’t Write Clever Code 1: Comments are good but not an excuse for bad, clever code.

☞LEARN MORE @ electronicdesign.com | 4

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

whereby you step from one element of the structure to the
next instead of jumping around in the structure, the compil-
er can take advantage of increment operations to access the
next element of the structure instead of trying to calculate
its offset from the structure pointer. In a statically allocated
structure, doing this will not save code since the addresses
are computed a priori. However, in most applications, these
are done dynamically.

Conclusion
Embedded compilers have evolved greatly over the last

30 years, especially as it pertains to their optimization
capabilities. Modern compilers employ many different
techniques to produce very tight and efficient code so that
you can focus on writing your source in a clear, logical,
and concise manner. Every developer strives to achieve
the optimum efficiency in their software. Compilers are
amazingly complex pieces of software that are capable of
great levels of optimization, but by following these simple
hints, you can help it achieve even greater levels of efficiency.

Rafael Taubinger is the Technical Marketing Specialist at
IAR Systems, based at the headquarters in Sweden. Prior to
his current role, he served as Global FAE Manager and Senior
FAE at IAR Systems. He has over 15 years of experience in
the embedded industry and holds a B.S. degree in Electrical
Engineering with emphasis in Electronics and a Master
of Business Administration (M.B.A) degree in Business
Management.

Rafael is highly skilled in C/C++ programming languages
for 8-, 16- and 32-bit microcontrollers, and has 2000+ hours
of technical training in US, Latin America and Europe about
embedded applications, C/C++ programming, safety coding,
system reliability, efficiency, modeling, code analysis and best
development practices.

☞LEARN MORE @ electronicdesign.com | 5

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

