
By RICK NELSON, Contributing Editor

T
he design, integration, and deployment of embedded-
system software presents many challenges related 
to the operating system, development environment, 
middleware, compiler, and other software tools. 

Although you can purchase commercial software products to 
meet many of your requirements, you might find that open-
source tools offer the optimum approach to some or all or 
your embedded software needs. But be sure to evaluate the 
tradeoffs before committing to a specific approach. 

Commercial software generally comes with training and 
support. On the other hand, with open-source software 
you’ll assume more development responsibility—but you 
can seek support from the open-source development com-
munity. Taking a mixed approach, you choose a commer-
cial software package and employ open-source plug-ins or 
opt for versions of open-source software maintained and 
supported by a commercial software vendor. Several com-
panies, for example, offer commercial versions of the open-
source Linux operating system. 

You also want to make sure that the vendor of your target 
processor supports open-source software. One such vendor 
is Texas Instruments, which supports the mainline Linux 
kernel and the kernel.org community organization. TI in-
corporates kernel.org’s most recent, stable kernels into the 
software-development kits (SDKs) that support its Arm-
based embedded processors. 

TI provides new features and functionality as well as TI’s 
bug fixes to the kernel.org community so that these im-
provements can be incorporated into mainline Linux. In 
turn, TI fully evaluates, documents, tests, and productizes 
SDKs utilizing mainline Linux kernels for its major proces-
sors.

Due to the constant evolution of open-source projects, 
developers often face the dilemma of when to upgrade to 
a more recent Linux kernel version. The benefits of new 
features, functionality, and bug fixes incorporated in the 
new kernel must be weighed against the costs of migration, 
which include unexpected effects that can require consider-
able time and effort to overcome. 

For example, discarding a patch during the migration 
process may have ramifications throughout the software 
environment, and changes during migration can make 
maintaining continuity in the code base difficult—thereby 
potentially compromising a software engineering team’s 
previous development investment. TI looks to reduce the 
cost of migrations by allowing users to take advantage of a 
new kernel version’s advantages. Its support ensures an ef-
ficient development environment and avoids the disruption 
and distraction that can accompany a migration to a new 
kernel, enabling orderly migration when necessary.

Open-Source Compiler Tools
In addition, you can leverage open-source software for 

compiler technology, as exemplified by the LLVM open-
source project, which consists of a collection of modular 
and reusable compiler toolchain building blocks for creating 
compilers. (The LLVM Foundation emphasizes that LLVM 
is not an acronym.) A subproject of LLVM is Clang, a C/
C++ compiler front end. 

Clang offers several advantages, including compatibil-
ity with software written for the Gnu Compiler Collection 
(GCC). Compared with GCC, Clang produces faster, more 
efficient code that can more easily fit within a memory-con-
strained device, minimizing the need to choose a costlier 

Simplify Embedded-
System Development with 
Open-Source Software
Sponsored by Texas Instruments: Embedded software development is a 
multidimensional effort that you can address by leveraging open-source compiler 
tools and operating systems.

☞LEARN MORE @ electronicdesign.com | 1

https://www.ti.com/lit/wp/spry189/spry189.pdf
https://www.ti.com/lit/wp/spry189/spry189.pdf
https://www.ti.com/lit/wp/spry189/spry189.pdf
https://www.ti.com/lit/wp/spry189/spry189.pdf
https://www.ti.com/lit/wp/spry259/spry259.pdf
https://www.ti.com/lit/wp/spry259/spry259.pdf
https://www.ti.com/lit/wp/spry259/spry259.pdf
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF


device with more memory.
LLVM and Clang have benefitted from the support of 

companies including Apple, Arm, Google, and Microsoft. 
Texas Instruments’ support includes TI Arm Clang, a new 
set of compiler tools for TI Arm Cortex microcontrollers. 
TI Arm Clang combines the Clang front end and LLVM op-
timizer with proprietary technology, such as TI’s linker and 
optimized C runtime library, to deliver optimal code size 
and minimize runtime footprints. Figure 1 illustrates how 
Clang, the LLVM optimizer, and the TI linker and C run-
time library fit together.

The TI Arm Clang toolchain produces efficient code as 
shown in Figure 2, which depicts the code size of a selec-
tion of software stacks—CoreSDK (including the real-time 

operating system and drivers), OpenThread, and the IEEE 
802.15.4g stack—that are part of the SDKs for SimpleLink 
MCUs. The figure then compares the code size produced 
by TI Arm Clang (tiarmclang) to GCC and the previous TI 
Arm compiler (armcl).

As Figure 2 illustrates, for the CoreSDK, TI Arm Clang 
produces code that’s 5% smaller than code produced by GCC 
and 3.5% smaller than code produced by armcl. These per-
centages may seem minor, but they can determine whether 
your application will fit into your chosen device’s memory. 
In addition, Texas Instruments has reported that it plans to 
make further improvements to TI Arm Clang in 2021 that 
will significantly impact code size.

In addition to being compatible with code written for 
GCC, TI Arm Clang is supported by the latest SDKs for TI’s 
CC3220, CC3230, CC3235, CC1312, CC1352, CC2642, and 
CC2652 microcontrollers. The SDKs include sample proj-
ects for TI Arm Clang as well as support for previous com-
pilers. (TI has reported it will not introduce new features for 
armcl, but it will continue regular maintenance releases for 
bug fixes.) You can use TI Arm Clang today to develop Wi-
Fi, Bluetooth Low Energy, Zigbee, IEEE 802.15.4, and other 
applications.

TI Arm Clang also offers support for code coverage (in-
cluding function, line, region/statement, and branch cover-
age), a feature that’s becoming increasingly important for 
functional-safety applications. In addition, current users 
of armcl will find that porting code or projects to TI Arm 
Clang is a smooth, simple process. TI Arm Clang uses the 
same TI linker as armcl; therefore, users needn’t modify the 
linker command file.

Conclusion
Open-source software can offer advantages in many em-

bedded applications, from Bluetooth Low Energy to IEEE 
802.15.4 low-rate wireless networks. Nevertheless, it also 
presents challenges, such as forgoing the training and sup-
port that generally come with commercial software. Never-

1. Clang, the LLVM optimizer, and the TI linker and C runtime library fit 

together to produce efficient code.

2. TI Arm Clang (tiarmclang) produces 

efficient code compared with GCC and 

the previous TI Arm compiler (armcl).

☞LEARN MORE @ electronicdesign.com | 2

https://e2e.ti.com/blogs_/b/process/posts/the-future-of-compiler-tools-for-ti-arm-cortex-based-mcus
https://e2e.ti.com/blogs_/b/process/posts/the-future-of-compiler-tools-for-ti-arm-cortex-based-mcus
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF


theless, you may be able to bring the necessary open-source 
expertise in house with the help of the open-source com-
munity. 

Open-source software tools span operating systems like 
Linux to LLVM compiler tools. With respect to the latter, the 
TI Arm Clang toolchain compiles efficient code while pre-
serving compatibility, allowing you to leverage source code 
written for GCC and keep your code base portable.

☞LEARN MORE @ electronicdesign.com | 3

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

