
FILIP GAJOWNICZEK, Technical Account Manager, 
AdaCore, info@adacore.com

H
opefully, the software you pour your time and 
effort into will be around to make the world a 
better place for a long time. But will today’s hard-
ware be sufficient to support future features and 

requirements? The breakneck pace at which new hardware, 
with increased resources, comes to market provides some 
relief for worries. But what if it also results in the obsolescence 
of your existing hardware? Can your codebase gracefully 
migrate to new hardware (i.e., can you recompile the source 
code and expect the correct behavior) when the time for an 
update arrives?

One issue that arises is the explicit use of non-portable 
constructs in your programming language; for example, fea-
tures that are implementation-dependent or have unspeci-
fied or undefined behavior. This is a well-studied area, and 
the standards for languages like C, C++, and Ada identify 
and characterize all of the features whose semantics can ex-
hibit such behavior. 

More subtly, your code may contain implicit assumptions 
about the underlying machine architecture (bit length, word 
size, endianness, etc.), and your code could break when 
compiled for a new hardware target if those assumptions 
are no longer correct. A commonly affected area of your 
software will be its external interfaces. Communication pro-
tocols typically prescribe the format of data and messages 
on the communication link in a manner that’s independent 
of the processor architectures of the endpoints. Memory-
mapped external registers are another form of communica-
tion where formats are prescribed.

Consider the concrete example of IP packets that are 
defined in terms of a big-endian data format. Suppose an 

existing system is big-endian and has the requirement of 
transmitting an unsigned 32-bit integer over the network. 
If the existing codebase’s implementation assumes that it’s 
running on a big-endian machine, one could simply provide 
the address of a 32-bit unsigned integer primitive as a byte 
buffer to send directly to the network. 

If the number to transmit has the value 0xDEADBEEF, 
the buffer’s bytes in memory (in order of increasing address-
es) will contain 0xDE 0xAD 0xBE 0xEF. Unfortunately, the 
same code will compile and run on a little-endian machine, 
but the buffer’s byte contents in memory would be 0xEF 
0xBE 0xAD 0xDE, which will be interpreted as a totally dif-
ferent value (0xEFBEADDE) by the receiver!

To create truly portable code, so that the headaches of 
such hardware updates are a thing of the past, you need to 
have the tools to allow you to precisely specify how your 
data is represented in memory when dealing with external 
interfaces.

The Ada Record Representation Clause
One area in which Ada excels is that the language was de-

signed specifically to solve the problems faced by long-lived 
embedded projects, which means portability is a primary 
concern. To achieve (among other benefits) improved por-
tability, Ada has rich specification semantics that give the 
programmer the tools to precisely control how data is repre-
sented in memory, down to the bit!

This feature of the Ada language is known as the record 
representation clause. To understand this feature, we’ll 
quickly introduce the concepts of a machine scalar and stor-
age element. Simply put, a storage element is the smallest 

How to Use Ada to 
Insulate Software from 
Hardware Updates
This article shows how to use Ada’s data-representation features to address one of the 
most vexing issues with hardware updates: Creating portable code that can define 
data structures with a specific physical layout, insulated from problems caused by 
endianness differences.

☞LEARN MORE @ electronicdesign.com | 1

mailto:info@adacore.com
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF


amount of addressable memory (typically a byte) and a ma-
chine scalar is an integer multiple of storage elements that 
can be efficiently loaded, stored, or operated on by the hard-
ware. 

The exact set of machine scalars is implementation-de-
fined and typically includes 8-, 16-, 32- and 64-bit values. 
The record representation clause allows the programmer to 
precisely control which bits in a machine scalar will store 
the fields of a heterogeneous data type (known as a record in 
Ada or a struct in C/C++). 

I’m a fan of learning by example, so let’s create and analyze 
an Ada specification for a data type used to store calendar 
dates:

In Ada idiomatic fashion, we have declared subtypes of 
the natural numbers to define valid ranges for Yr_Type, 
Mo_Type, and Da_Type. The compiler will automatically 
insert run-time code to ensure no invalid values will be as-
signed. These types are then used to define the record type 
Date_Type. 

Finally, a representation clause is introduced using the use 
record keywords to specify that the Years_Since_1980 field 
be located at bits 0 through 6 of the 0-th machine scalar, the 
Month field be located at bits 7 through 10 of the 0-th ma-
chine scalar, and that the Day_Of_Month field be located at 
bits 11 through 15 in the 0-th machine scalar. Notice that the 
machine scalar needn’t be explicitly specified (in contrast to 
C/C++ bitfields)—the Ada compiler takes responsibility for 
making the proper selection. 

At this point, those of you that have had the pleasure of 
dealing with data-representation issues are probably asking 
questions such as: “Is the least significant bit (LSB) the 0-th 
bit?” “How are storage elements ordered in memory?”

Dealing with Bit Ordering and Endianness
The answers to these questions are particularly important 

when retargeting an application from legacy hardware of a 
given endianness to another platform with different endian-

ness. If any data was stored in memory or persistent stor-
age by the legacy system, or if interoperability with other 
subsystems needs to be preserved, all data structures must 
have precisely the same representation on the two platforms. 
Where portability is a concern, attributes must be used to 
override the implementation-defined native bit ordering 
and endianness. Let’s focus on the specific case of a target 
with an x86_64 architecture. 

It’s important to keep in mind that bit offsets for a com-
ponent in a record representation clause are always relative 
to some machine scalar. In general, the component value is 
extracted and set using shift and mask operations.

To find out which machine scalar a given component be-
longs to, you must first identify the set of components that 
share the same machine-scalar offset. In our example, this 
would be all three components since all are specified with an 
offset of 0. The compiler determines the machine scalar used 
by selecting the smallest machine scalar whose bitlength is 
greater than the greatest bit offset specified for any field in 
the record’s representation clause. 

In this example, the x86_64 architecture provides a two-
byte integer machine scalar that the compiler will use for 
this data type. (You can specify alignment requirements sep-
arately in case the type’s instances need an alignment stricter 
than what’s implied by the machine-scalar size. This is an 
interesting topic, and handled nicely in Ada, but is outside 
the scope of this article.) 

Bit ordering refers to the numbering of bits in a machine 
scalar, and endianness refers to the ordering of the storage 
elements from which the machine scalar is composed. These 
orderings are a property of the target hardware and can be 
independent. 

The machine scalar is a logical entity with two important 
properties:

• The most significant bit is always the left-most bit.
• The most significant byte is always the left-most byte.

The key to understanding bit ordering is to know that 
the bit significance property holds for any range of bits in 
the machine scalar regardless of how they’re ordered (num-
bered). Bits are numbered in ascending order starting from 
0 and the bit ordering simply defines the number used to 
refer to a bit in the machine scalar. Storage element order-
ing (endianness) is similarly just an ordering (numbering) 
of the bytes of a machine scalar and manifests itself as the 
machine placing bytes into memory in ascending order.

Table 1 illustrates the difference between the bit ordering 
where the most significant bit is 0 (abbreviated MSB0) and 
the bit ordering where the least significant bit is 0 (abbrevi-
ated LSB0). It also illustrates the difference in storage ele-
ment ordering between little-endian and big-endian encod-
ings. Note that the values of the machine scalar’s bits are the 

☞LEARN MORE @ electronicdesign.com | 2

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF


same and don’t change based on the orderings. 
Things get interesting when we want to represent values 

in specific ranges of bits in the machine scalar; for example, 

in our Date_Type record above. Suppose we want to store 
“December 12th, 2012” in an object of Date_Type. The 
Years_Since_1980 field will have a value of 32, the Mo_Type 

field will have a value of 12, and the 
Day_Of_Month field will also have a 
value of 12. The bits used to store each 
field in the machine scalar will be differ-
ent depending on the bit order specified 
(Table 2).

The key observation is that only the 
range of bits used to represent each field 
have changed but the bit values used to 
encode each field, from left to right in 
each bit range, remain the same. In this 
sense, specifying the bit ordering con-
trols which bits of the machine scalar are 
used to encode each field. Note that we 
still do not know the data layout (i.e., the 
order of bytes) in memory—this still de-
pends on the target endianness.

It’s precisely in order to overcome 
this limitation that the Scalar_Stor-
age_Order attribute was introduced in 
the GNAT Ada, C, and C++ compilers. 
The effect of this attribute is to override 
the order of storage elements in machine 
scalars for a given record type, i.e., to 
control the endianness. If both the en-
dianness and bit ordering are known, 
the actual memory representation of the 
data is fully determined. 

There are four possible combinations 
of bit ordering and endianness, but 
GNAT restricts the possibilities to Little 
Endian LSB0 and Big Endian MSB0. 
These two combinations provide enough 
flexibility to allow the programmer to 
have full control of data layout in memo-
ry. The more exotic combinations of lit-
tle-endian MSB0 and big-endian LSB0 
can still exist, but require assumptions 
on the target architecture (and are thus 
non portable!). 

The x86_64 architecture uses little-
endian and LSB0 natively. Specifying 
the Date_Type’s Bit_Order and Scalar_
Storage_Order attributes with Ada as-
pects can yield the memory representa-
tions shown in Table 3 on this target. 

Existing code for a big-endian sys-
tem can thus be ported to a little-endi-

an system without any fuss, and without 

Table 1: Different bit orderings and byte orderings for a 16-bit integer machine scalar.

Table 2: Comparison of bit values in a 16-bit integer machine scalar representing Date_Type 

under each bit ordering.

☞LEARN MORE @ electronicdesign.com | 3

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF


any change of data representation—
just add appropriate attribute defini-
tions on the relevant record type dec-
larations. After these attributes have 
been defined on data types whose 
data representations need to be fully 
specified, future hardware updates 
become automatic and painless. This 
is because the compiler takes the re-
sponsibility of generating and insert-
ing runtime code for bit-shifting, bit-
masking, and byte-flipping. 

One thing to keep in mind is the 
tradeoff between performance and 
portability when a data type’s repre-
sentation specification differs from 
the native representation. The ad-
ditional runtime code required to 
make the code portable may not be 
appropriate in sections of the code 
with strong performance require-
ments. In such a case, rewriting the 
code for the specific target’s architec-
ture may be unavoidable.

Conclusion
Defining physical data repre-

sentations in a portable manner is 
non-trivial, and faulty endianness 
assumptions are a common source 
of errors in an application’s external 
interface, whether it be via memory-
mapped registers or communication 
protocols. If an application’s data 
can’t be precisely laid out in memory 
when needed, hardware updates 
may prove to be unnecessarily costly, 
time-consuming, and risky. 

This article demonstrates how a 
data type’s memory representation 
can easily be fully specified using 
the features of the Ada language 
and GNAT compilers, independent 
of the endianness of the underlying 
hardware. This allows the program-
mer to develop portable, long-lived 

Table 3: Comparison of bit values in a 

16-bit integer machine scalar represent-

ing Date_Type under each combination of 

bit ordering and storage element ordering 

on an x86 architecture. 

☞LEARN MORE @ electronicdesign.com | 4

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF


applications insulated from the risks of hardware migration.
To learn more about Ada, we encourage you to visit the 

free, online, interactive training site learn.adacore.com.

Filip Gajowniczek is a Technical 
Account Manager at AdaCore based 
in the United States. At AdaCore, 
Filip is a technical resource for the 
sales team, working with customers to 
understand and solve their technical 
challenges. His previous experience in 
the defense industry, as an embedded 
software engineer for mission-critical 
aerial platform applications, gives him 
a first-hand perspective of the challenges faced by long-lived 
projects developing safe, secure, and reliable software that 
matters. In addition, at the Georgia Institute of Technology, 
Filip developed a strong academic background in the areas 
of computer networking, machine learning, and engineering 
algorithm/application development while earning his Masters 
of Science in Electrical and Computer Engineering. 

☞LEARN MORE @ electronicdesign.com | 5

https://learn.adacore.com/
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

