
By DR. DENNIS KENGO OKA, Principal Automotive Security Strategist,
Synopsys Software Integrity Group www.synopsys.com/software, and

DR. RALF HUUCK, CEO & Founder, Logilica, www.logilica.com

M
odern automotive software has increasingly
stringent requirements on safe and secure
development. Besides development ECUs
in classical domains such as powertrain,

chassis, and body electronics, more advanced new systems
are being developed such as digital cockpits, infotainment
systems, autonomous driving systems, and connectivity units.

Standards such as ISO 262621 and ISO/SAE 214342 pro-
vide guidance to automotive organizations on a higher level
regarding how to consider safety and security. However,
more specifically for coding and considering source-code
quality, safety, and security, there are specific coding guide-
lines such as MISRA3,4 and AUTOSAR coding guidelines.5

What is MISRA and AUTOSAR?
The Motor Industry Software Reliability Association

(MISRA) defines a set of guidelines and directives for C/
C++ software development mostly applied to safety critical
systems in domains such as automotive, defense, and avion-
ics.

MISRA-C:20123 including Amendment 16 and 2,7 which
is the latest version currently available, defines 175 develop-
ment guidelines split into 158 rules and 17 directives, and
further categorizes each rule into mandatory, required and
advisory. Moreover, to assist organizations on how to vali-
date the guidelines, each guideline is defined as decidable
or undecidable. Decidable guidelines can be verified using a
static-analysis tool; however, for the undecidable guidelines,
static analysis can only generate an incomplete picture, thus
producing potential false positives/negatives.

In addition, AUTomotive Open System ARchitecture

(AUTOSAR) defines a set of guidelines called AUTOSAR
Coding Guidelines C++.5 These are considered as an update
of the MISRA-C++:20084 standard and are currently being
revised by the MISRA C++ committee.

Furthermore, in 2016, MISRA published the MISRA
Compliance:2016 document,8 which serves as a guide for
organizations on how to achieve MISRA compliance. This
document was updated in 20209 and serves as the formal
guide for the compliance process. It defines deliverables
for process compliance, including a Guideline Enforcement
Plan, a Guideline Reclassification Plan, and a Compliance
Summary.

Those deliveries are supported by optional Deviation Re-
cords and Deviation Permits. Specifically, it’s worth mention-
ing that rules categorized as advisory may be reclassified as
disapplied in Guideline Reclassification Plan, meaning that
those rules would not be applicable to the specific project.

In addition, the MISRA Compliance document defines
rules and constraints around what compliance means, un-
der which constraints guidelines can be reclassified, and un-
der which circumstances deviations from the guidelines are
permitted. On top of that, guidance is given on how to deal
with so-called Adopted Code, such as third-party binaries or
open-source software.

Although the MISRA Compliance document provides
guidance, many organizations seem to be struggling by of-
ten just applying vendor tools with MISRA or AUTOSAR
coding checkers enabled. They’re not well-aware of the com-
pliance definitions and the freedom within the compliance
process.

Practical Considerations
for MISRA and AUTOSAR
Coding Compliance
Automotive is shifting left, introducing safety and security assurances earlier in the
development process. We show you how to shift left with MISRA and AUTOSAR code
compliance for ISO 26262 and ISO/SAE 21434. Learn how to create practical strategies
to get to market faster safely.

☞LEARN MORE @ electronicdesign.com | 1

Challenges
While on the surface it may seem straightforward to

achieve compliance by following some coding guidelines
during development, in practice there are multiple chal-
lenges. First, software in new systems such as digital cock-
pits, infotainment systems, autonomous driving systems,
and connectivity units often consists of code from various
sources, including own-developed code, third-party-devel-
oped code, commercial software, auto-generated code, and
open-source software.

Trying to achieve coding compliance on the entire code
base is a major challenge since some parts of the software

may not have been devel-
oped with the MISRA or
AUTOSAR coding guide-
lines in mind. Thus, scan-
ning the entire code base
for coding compliance
to MISRA or AUTOSAR
would typically generate an
exceptionally large number
of coding violations, which
is unfeasible for an organi-
zation to realistically pro-
cess.

More importantly, many
of these findings may have

low priority based on the specific guideline type, or the type
of software component that’s perhaps deemed not relevant
to safety or security. The large number of findings make it
challenging for an organization to identify the top priority
issues that must be addressed first. This challenge is further
exacerbated by the fact that code bases contain increasingly
growing amounts of software from various sources.

Overview of the Solution
It’s crucial for organizations to have a clear understanding

of the parts of the code base and the coding guidelines with
the highest priority so that violations are efficiently handled.

1. Example of code segmentation, where the code base is segmented into various software components.

2. Examples of MISRA findings detected by a static code analysis tool.

☞LEARN MORE @ electronicdesign.com | 2

As mentioned, a naïve approach is to scan the entire code
base using a static-code-analysis tool with all coding guide-
line checkers enabled, which generates numerous findings.
To address this challenge, a solution based on a two-step
process is described as follows.

As a first step, organizations need to identify relevant
coding guidelines for relevant parts in the code base and
create an appropriate configuration for the software of
the target system. It may be possible to apply results from
a hazard analysis and risk assessment (HARA) or threat
analysis and risk assessment (TARA) to more accurately
identify safety- and security-relevant software components
in the code base.

That code base can then be segmented into various
components, e.g., own-developed safety-critical component,
auto-generated non-safety critical component, third-
party developed security-critical component, open-source
software non-safety critical component, commercial non-
safety critical component etc. A simplified example is
depicted in Figure 1.

Furthermore, the organization can determine which
coding guidelines are appropriate for which parts of the code
base. For example, certain rules may be more applicable to
safety- and security-critical components, and less applicable
to non-safety- and non-security-critical components. Then
a static-code-analysis tool is configured accordingly. It can
be used to scan the code base regularly to only check for
certain coding guidelines relevant to the specific software
components to achieve more efficient scanning.

It’s important to note that an organization should use a
static-code-analysis tool with a broad coverage of coding
guideline checkers to achieve better results.10,11 Examples
of MISRA findings identified by a static-code-analysis tool
called Coverity12 is shown in Figure 2.

The static-code-analysis tool generates results that are
processed by a data-analytics tool in the second step. The
objective is to explore the result set of potentially still thou-
sands if not hundreds of thousands of findings and create a
customer burn-down strategy.

The Logilica Insights tool13 provides analytics capabilities
similar to those found in Business Intelligence solutions and
combines them with visual representations. These allow an
organization to explore the findings and gain insights more
easily into the relevant MISRA Compliance strategy for the
code base.

Besides common charting and visualization techniques,
Logilica employs so-called CodeCities,14 which are 3D maps
of software repositories. Each file is displayed as a building
and folders are displayed as platforms. Metrics can be over-
layed to determine the size and color of the buildings. An
example of MISRA findings generated by a static-code-anal-
ysis tool using this technique is illustrated in Figure 3.

The height of the building reflects the size of the file and
the color of the building indicates the MISRA defect density
(findings per code size). For example, the building colored
in red in the figure has a high defect density and may indi-
cate that this is something an organization should look at
first with higher priority. Moreover, this visual representa-
tion can help identify hotspots, i.e., particular code areas
that contain large numbers of violations. Organizations can
then further investigate what may be causing these hotspots.

Benefits
This solution has a number of benefits. For instance, it can

help organizations better identify the top offending rules.
Furthermore, it can provide an understanding of the loca-
tion of these violations—i.e., which components and which
files—and help define a compliance strategy.

In the first step, it’s imperative to get the tooling and pro-
cesses right. The static-analysis tool is configured using the
specific configuration of relevant coding guidelines for the
target software to allow for more efficient scanning that
enables the scan to be performed regularly (e.g., daily). In
the second step, it’s possible for developers and engineer-
ing management to gain clear insights into the current sta-
tus of the project using the data-analytics tool. For instance,
it would be possible for an organization to easily identify
whether a large number of findings are detected in adopted

3. 3D map visualizing defect density in the code base.

☞LEARN MORE @ electronicdesign.com | 3

code (e.g., an open-source software component), or if cer-
tain specific rules generate a significant number of findings.

Based on those insights, the organization can define an
appropriate compliance strategy, perhaps to start burn-
down in non-adopted code or exclude advisory rules. For
example, as shown in Figure 4, among the top offending
rules for an example project is Rule 15.5 with 13,820 find-
ings. This rule is categorized as advisory and for this project
could be reclassified as disapplied, meaning that it would
be possible to ignore these 13,820 findings. These strategies
help organizations to prioritize and allow software develop-
ers to focus on working on the right areas.

As automotive systems continue to advance and contain
more complex software, including software from various
sources such as own-developed code, third-party developed
code, commercial software, and open-source software com-
ponents, software compliance is naturally becoming a great-
er challenge. To overcome these challenges and put coding
compliance into practice, automotive organizations need to
establish proper workflows and adopt appropriate technical
solutions.15

Dr. Dennis Kengo Oka is an automo-
tive cybersecurity expert with more than
15 years of global experience in the auto-
motive industry. He received his Ph.D. in
automotive security, focusing on solutions
for the connected car. Dennis has over 60
publications consisting of conference pa-
pers, journal articles, and books, and is a
frequent public speaker at international
automotive and cybersecurity conferences and events.

Dr. Ralf Huuck is CEO and
founder of Logilica, Australia, a
leading analytics solution pro-
vider for the software lifecycle
space. Ralf has been in the auto-
motive application security and
software testing space for over 20
years. He served in executive and
senior technical roles at Synopsys,
Red Lizard Software, and Australia’s national R&D
lab NICTA. Ralf is an Adjunct Associate Professor at
UNSW, Australia, in the field of software technology
with over 50 peer reviewed publications to his name.

References
1. ISO, “ISO 26262 - Road vehicles—Functional
safety,” 2018.
2. ISO/SAE International, “ISO/SAE DIS 21434 -
Road Vehicles—Cybersecurity engineering,” 2020.
3. MISRA, “MISRA C:2012 Guidelines for the use of
the C language in critical systems,” 2013.
4. MISRA, “MISRA C++:2008 Guidelines for the

Use of the C++ Language in Critical Systems,” 2008.
5. AUTOSAR, “Guidelines for the use of the C++14 lan-
guage in critical and safety-related systems,” 2019.
6. MISRA, “MISRA C:2012 Amendment 1 - Additional se-
curity guidelines for MISRA C:2012,” 2016.
7. MISRA, “MISRA C:2012 Amendment 2 - Updates for
ISO/IEC 9899:2011 Core functionality,” 2020.
8. MISRA, “MISRA Compliance:2016 - Achieving compli-
ance with MISRA Coding Guidelines,” 2016.
9. MISRA, “MISRA Compliance:2020 - Achieving compli-
ance with MISRA Coding Guidelines,” 2020.
10. Synopsys, “Coverity Support for MISRA Coding Stan-
dards,” 2020.
11. Synopsys, “Coverity Support for AUTOSAR Coding
Standards,” 2020.
12. Synopsys, “Coverity Static Application Security Testing,”
https://www.synopsys.com/software-integrity/security-test-
ing/static-analysis-sast.html.
13. Logilica Insights, https://logilica.com.
14. R. Wettel, and M. Lanza, “CodeCity: 3D visualiza-
tion of large-scale software” Proceedings - International
Conference on Software Engineering, 2008. 921-922.
10.1145/1370175.1370188.
15. D. K. Oka, and R. Huuck, “How to Put MISRA and
AUTOSAR Coding Compliance into Practice,” Embedded
World, 2021

4. Top offending MISRA rules from an example project.

☞LEARN MORE @ electronicdesign.com | 4

