
By WILLIAM WONG, Editor,
Electronic Design

M
achine learning (ML) is a hot topic when it
comes to almost anything related to com-
puting, from analyzing data in the cloud,
to self-driving cars recognizing people and

things, to detecting defective PCBs or chips. Like artificial
intelligence (AI), ML is a very broad subset of AI that’s often
mischaracterized even by people technical backgrounds.

Deep learning is a term that’s bandied about these days,
but what does it really mean? Typically, it’s shorthand for a
discussion about deep neural networks (DNNs). We will get
into more detail about neural networks but first a comment
about current ML use.

We recently finished up our local Mercer Science and
Engineering Fair, which I help manage. As you might guess,
a lot of projects employed ML models for various tasks. This
is a challenge from numerous points of view.

All of the students were using a predefined ML model to
perform a specific task, like identifying a problem. Some
actually trained a model, but the general knowledge about
ML, their model, and its implications were something
neither the students or judges really had a handle on. I
wound up giving a number of judges an overview on ML
and how they should view it with respect to the projects.

Essentially, the student’s use of ML was as a tool
and not some cutting-edge AI advance. In general, the
understanding of the tool, how it worked, and how to use
it was significantly lacking. However, that should not be
unexpected given how much students are learning when
working on a project that’s very new to them. It’s great to
discover how they can get things done. Still, developers and
engineers who plan on building commercial solutions need
much more insight because of the responsibility they have
for the resulting products and their use.

What I hope to accomplish here is to reveal the types and
capabilities of some of the more important machine-learning
technologies so you can figure out what to investigate and
what level of interaction is needed to take advantage of

DNN ML technology. It can range from using preconfigured
models to creating new models for an application.

The amount of effort between those two is significant,
from an afternoon’s worth of work to decades of man
hours. Many will simply use a product like a smart camera
that employs ML without ever dealing with the technology
directly. Nonetheless, it helps to know how the technology
works and what the limitations are because we don’t have
positronic brains around the corner or the robots to
match—yet.

Machine-Learning Basics
Two of the main ML technologies include rule-based

expert systems that are sort of state machines on steroids,
and neural networks.

Expert systems are still in use and a viable solution for
many problems. They’re normally created using explicit
rules to build behavior-based systems that respond to
input. Self-trained systems like this haven’t worked well,
but expert systems can be very fast, accurate, and efficient
when properly programmed. Unfortunately, translation of
expertise into an expert system is often time-consuming.

Understanding the Art
of Machine Learning
Though neural-network-based machine learning is escalating in popularity, the
mechanics behind it tend to be misconstrued or simply not known at all.

1. A perceptron multiplies weight values with inputs that are then

added together and combined with bias and activation functions to

generate an output.

☞LEARN MORE @ electronicdesign.com | 1

https://mercersec.org
https://mercersec.org
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

On the other hand, neural networks (NNs) are modeled
after the brain, although at a logical level. The approach has
been around for decades. However, new hardware made this
approach more practical, allowing for the implementation
of complex AI/ML models.

A perceptron is the model of a biological neuron (Fig.
1). In general terms, input values are
combined with weights, summed with
a bias and activation function included
in the mix to generate an output. This
is kind of like discussing logic circuits,
op amps, and transistors. We’re doing a
bit of hand waving here, but it’s enough
to provide the basics for our discussion.

The next step is to combine
perceptrons (Fig. 2). Typically, multiple
layers are involved in a model that needs
to be designed based on the number of
inputs, outputs, and functionality of
the system. A model is the combined
architecture along with the weights
used within the system. These weight
values are usually obtained by training
a model. The number of layers can
be large, hence the term deep neural
networks, or DNNs, that really describes
the general magnitude of the models
rather than a specific approach, which

we will get to later.
The outputs are probabilities. A

system will often have thresholds for
acceptable identifications depending
on the purpose of the model. The level
of detail in the analysis of an image, for
example, can range from an object to an
animal to a cat to a Persian cat.

Dealing with images can greatly
increase the complexity of a model.
Even a small, 320- × 240-pixel image
translates to 76,800 inputs. If color
instead of grayscale is used as inputs,
then a red-green-blue (RGB) encoding
bumps this by a factor of three.

On the other hand, working with
fewer inputs enables simpler models to
be implemented, often in software on a
microcontroller. For example, a motor-
control application may have half-a-
dozen inputs to support a preventive-
maintenance model.

The Many Neural Networks
There are many different types of NNs, including artificial

neural networks (ANNs) and spiking neural networks
(SNNs). ANNs use a parallel approach to presenting the
inputs to the network with outputs available after all of the
data flows through the network.

SNNs are more akin to biological neurons—they are

2. Perceptrons are combined in multiple layers to form machine-learning models. The middle

layers are often referred to as hidden layers, and there may be multiple hidden layers.

3. SNNs are similar to biological neurons because input data is a series of time-related blips

of data.

☞LEARN MORE @ electronicdesign.com | 2

https://en.wikipedia.org/wiki/Neural_network
https://en.wikipedia.org/wiki/Neural_network
https://www.electronicdesign.com/industrial-automation/article/21806823/brainchip-takes-spiking-neural-networks-to-the-next-level
https://www.electronicdesign.com/industrial-automation/article/21806823/brainchip-takes-spiking-neural-networks-to-the-next-level
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

asynchronous working off time-related blips of data (Fig. 3).
An SNN neuron emits a spike when a membrane threshold
is reached. An SNN can be implemented in many ways, but
the most popular is a leaky integrate-and-fire approach that
mimics its biological cousins.

SNNs tend to have less overhead than other neural
networks, but their accuracy is usually lower. Keep in mind
that all of these networks are dealing with thresholds and
probabilities and 100% accuracy is only a goal. Also, keep
in mind that SNNs can often be trained in the field, while
training for other neural nets is typically done in the cloud
where additional data is accumulated. SNNs are able to do
this in part because of their lower implementation overhead
and due to the technology itself.

A number of other neural-network types are out there, and
many models can fit under these broad categories. They can
perform functions such as identification and classification.
Let’s take a closer look at three major categories:
•	 Convolutional networks (CNNs)
•	 Recurrent neural networks (RNNs)
•	 Generative adversarial networks (GANs)
A CNN is a DNN that’s typically used for image analysis.

It can be applied in facial-recognition systems, parsing
documents, and image segmentation. CNNs are also a type
of space invariant artificial neural networks (SIANNs).

A CNN model essentially implements filters via the
training process. The bias and activation operations
include a Frobenius inner dot product. The model includes
convolutional and pooling layers.
The number of inputs and outputs
of a convolutional layer are typically
the same. The pooling layers reduce
the number of outputs. This is often
accomplished by getting an output,
which involves taking the maximum
input value or average of a group of
inputs.

An RNN’s perceptrons take their
output as the input to the next set of data
(Fig. 4). A dataflow implementation
would typically include latched inputs
so that the output could be used in the
subsequent calculation. Oftentimes,
RNNs are used to analyze audio streams,
text, and time series information.

The GAN is a neural network
designed to generate an output that’s
similar to the input. For example, a
GAN model could change a cat into a
dog that would have the same pose, etc.
This type of model is able to unpaint
pictures or upscale video.

A GAN consists of a generator network and a
discriminative network. The former creates candidates
based on the inputs and the latter evaluates the new data.
Each must be trained with the discriminative network being
trained with inputs, much like how a CNN would be trained.
The generator is typically a deconvolutional neural network
that’s trained to increase the error rate of the discriminative
network.

Multicore vs. Data-Flow Acceleration
Neural-network models are like applications. They’re

specifications that can be implemented in a number of ways,
from a software application to a hardware implementation.
Hardware implementations are typically faster and use less
power, thus providing more performance such as the ability
to analyze video streams in real-time.

A very, very large number of calculations is the reason that
hardware acceleration is often required in AI applications,
but this is related to the input size and model complexity.
Video applications typically benefit from hardware support.

Hardware-acceleration approaches can be divided into
data-flow or application-specific support, targeted multicore,
and instruction set augmentation. Most ML/AI chips go
with data-flow or targeted-multicore implementations. The
latter is often a DSP or single-instruction, multiple-data
(SIMD) architecture that’s customized for AI/ML models.
An example of instruction set augmentation is Arm’s
Cortex-M55, which adds instructions that improve support

4. Recurrent neural networks (RNNs) provide each perceptron with a feedback loop.

☞LEARN MORE @ electronicdesign.com | 3

https://www.electronicdesign.com/technologies/embedded-revolution/article/21122665/cortexm-gets-heavy-duty-machine-learning
https://www.electronicdesign.com/technologies/embedded-revolution/article/21122665/cortexm-gets-heavy-duty-machine-learning
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

for AI/ML-related numeric encodings and computations
such as matrix manipulation.

AI/ML models can be implemented using double-
precision floating point, but that tends to be very inefficient
for various reasons. Using more compact formats like 8-
and 16-bit floating point, and 8-bit fixed point, significantly
reduces storage requirements, calculation hardware, and
calculation time, thereby lowering power requirements
while improving performance.

Another aspect deals with sparse networks. It turns out
that in many cases, weights are often zero or very close to
zero. This enables those calculations and the data movement
to be eliminated by optimization. Much of it is hidden
behind model compilers that accept models from standard
frameworks like TensorFlow and Caffe2.

Another consideration with respect to hardware involves
multiple models and splitting models across different types
of hardware. Many times, multiple models are used to
provide more functionality based on the same input or to
address different aspects of the overall application.

For example, an electric car may have an advanced driver-
assistance system (ADAS) or fully autonomous-driving
system that uses object recognition and other models to
handle preventative maintenance for the electric motors.
Targeted or sophisticated system-on-chip (SoC) solutions
are often designed to handle this mixture.

The splitting of models makes sense because the hardware
support for different parts of the model can vary. Multicore
microcontrollers like Eta Compute’s ECM3532 includes a
Cortex-M4 and NXP CoolFlux DSP. The latter is augmented
to handle AI/ML models, but the Cortex-M4 can help.

Making Decisions for Applications
Choosing models and hardware platforms to support

them can be complex. They can probably use an AI model
if someone would make it. On the plus side, this type
of support can be approached in different ways if your
application would benefit from AI/ML support.

The first way is easy: Use a product with AI support that
requires minimal or no training. Many robotic sensors
targeting the educational market fall into this category. They
are essentially smart sensors that provide feedback to a host,
such as “red obstacle 15 cm ahead.”

The majority of uses fall into the next category: Utilizing
predefined and often pretrained models on hardware of
your choice. This may require choosing a model, and usually
the available models will be based on the hardware choice
or vice versa. This is the advantage of using platforms like
TensorFlow or Caffe, since hardware vendors have chosen
to support these. Likewise, performance numbers are often
available, so you can gauge what platform may be suitable
for your application.

If a model is available and you have the data to train it,
then the problem often reverts to a standard engineering
challenge of balancing and optimizing cost, performance,
power, and capacity. You may have much more work to do if
the models that exist don’t quite match your needs.

Creating a new model is only for those with big bucks,
lots of time, or lots of expertise. This is where the experts
come in—even companies and organizations are using AI
to create models. You can also wait until someone develops
a model that you can use, although working with an
unsupported, open-source model may not be the best choice
for a commercial product. Like many open-source software
projects, you may have to support yourself.

The challenge these days is that the technology and
availability of AI/ML solutions is changing so quickly.
Compiler improvements can sometimes double performance,
making a lower-end platform capable of handling your
application when it couldn’t do so with the earlier version.
Likewise, many new chips with AI enhancements or
dedicated chips are becoming available, and new processor
designs are regularly including instruction set extensions
and data formats amenable to AI/ML models.

☞LEARN MORE @ electronicdesign.com | 4

https://etacompute.com/
https://www.electronicdesign.com/technologies/iot/article/21160224/electronic-design-ultralowpower-micro-tackles-video-ai-chores
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

