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M
achine learning (ML) is a hot topic when it 
comes to almost anything related to com-
puting, from analyzing data in the cloud, 
to self-driving cars recognizing people and 

things, to detecting defective PCBs or chips. Like artificial 
intelligence (AI), ML is a very broad subset of AI that’s often 
mischaracterized even by people technical backgrounds. 

Deep learning is a term that’s bandied about these days, 
but what does it really mean? Typically, it’s shorthand for a 
discussion about deep neural networks (DNNs). We will get 
into more detail about neural networks but first a comment 
about current ML use. 

We recently finished up our local Mercer Science and 
Engineering Fair, which I help manage. As you might guess, 
a lot of projects employed ML models for various tasks. This 
is a challenge from numerous points of view. 

All of the students were using a predefined ML model to 
perform a specific task, like identifying a problem. Some 
actually trained a model, but the general knowledge about 
ML, their model, and its implications were something 
neither the students or judges really had a handle on. I 
wound up giving a number of judges an overview on ML 
and how they should view it with respect to the projects. 

Essentially, the student’s use of ML was as a tool 
and not some cutting-edge AI advance. In general, the 
understanding of the tool, how it worked, and how to use 
it was significantly lacking. However, that should not be 
unexpected given how much students are learning when 
working on a project that’s very new to them. It’s great to 
discover how they can get things done. Still, developers and 
engineers who plan on building commercial solutions need 
much more insight because of the responsibility they have 
for the resulting products and their use. 

What I hope to accomplish here is to reveal the types and 
capabilities of some of the more important machine-learning 
technologies so you can figure out what to investigate and 
what level of interaction is needed to take advantage of 

DNN ML technology. It can range from using preconfigured 
models to creating new models for an application. 

The amount of effort between those two is significant, 
from an afternoon’s worth of work to decades of man 
hours. Many will simply use a product like a smart camera 
that employs ML without ever dealing with the technology 
directly. Nonetheless, it helps to know how the technology 
works and what the limitations are because we don’t have 
positronic brains around the corner or the robots to 
match—yet. 

Machine-Learning Basics
Two of the main ML technologies include rule-based 

expert systems that are sort of state machines on steroids, 
and neural networks.

Expert systems are still in use and a viable solution for 
many problems. They’re normally created using explicit 
rules to build behavior-based systems that respond to 
input. Self-trained systems like this haven’t worked well, 
but expert systems can be very fast, accurate, and efficient 
when properly programmed. Unfortunately, translation of 
expertise into an expert system is often time-consuming. 

Understanding the Art  
of Machine Learning
Though neural-network-based machine learning is escalating in popularity, the 
mechanics behind it tend to be misconstrued or simply not known at all. 

1. A perceptron multiplies weight values with inputs that are then 

added together and combined with bias and activation functions to 

generate an output. 
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On the other hand, neural networks (NNs) are modeled 
after the brain, although at a logical level. The approach has 
been around for decades. However, new hardware made this 
approach more practical, allowing for the implementation 
of complex AI/ML models. 

A perceptron is the model of a biological neuron (Fig. 
1). In general terms, input values are 
combined with weights, summed with 
a bias and activation function included 
in the mix to generate an output. This 
is kind of like discussing logic circuits, 
op amps, and transistors. We’re doing a 
bit of hand waving here, but it’s enough 
to provide the basics for our discussion. 

The next step is to combine 
perceptrons (Fig. 2). Typically, multiple 
layers are involved in a model that needs 
to be designed based on the number of 
inputs, outputs, and functionality of 
the system. A model is the combined 
architecture along with the weights 
used within the system. These weight 
values are usually obtained by training 
a model. The number of layers can 
be large, hence the term deep neural 
networks, or DNNs, that really describes 
the general magnitude of the models 
rather than a specific approach, which 

we will get to later. 
The outputs are probabilities. A 

system will often have thresholds for 
acceptable identifications depending 
on the purpose of the model. The level 
of detail in the analysis of an image, for 
example, can range from an object to an 
animal to a cat to a Persian cat. 

Dealing with images can greatly 
increase the complexity of a model. 
Even a small, 320- × 240-pixel image 
translates to 76,800 inputs. If color 
instead of grayscale is used as inputs, 
then a red-green-blue (RGB) encoding 
bumps this by a factor of three. 

On the other hand, working with 
fewer inputs enables simpler models to 
be implemented, often in software on a 
microcontroller. For example, a motor-
control application may have half-a-
dozen inputs to support a preventive-
maintenance model. 

The Many Neural Networks
There are many different types of NNs, including artificial 

neural networks (ANNs) and spiking neural networks 
(SNNs). ANNs use a parallel approach to presenting the 
inputs to the network with outputs available after all of the 
data flows through the network. 

SNNs are more akin to biological neurons—they are 

2. Perceptrons are combined in multiple layers to form machine-learning models. The middle 

layers are often referred to as hidden layers, and there may be multiple hidden layers. 

3. SNNs are similar to biological neurons because input data is a series of time-related blips 

of data.
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asynchronous working off time-related blips of data (Fig. 3). 
An SNN neuron emits a spike when a membrane threshold 
is reached. An SNN can be implemented in many ways, but 
the most popular is a leaky integrate-and-fire approach that 
mimics its biological cousins. 

SNNs tend to have less overhead than other neural 
networks, but their accuracy is usually lower. Keep in mind 
that all of these networks are dealing with thresholds and 
probabilities and 100% accuracy is only a goal. Also, keep 
in mind that SNNs can often be trained in the field, while 
training for other neural nets is typically done in the cloud 
where additional data is accumulated. SNNs are able to do 
this in part because of their lower implementation overhead 
and due to the technology itself. 

A number of other neural-network types are out there, and 
many models can fit under these broad categories. They can 
perform functions such as identification and classification. 
Let’s take a closer look at three major categories:
•	 Convolutional networks (CNNs)
•	 Recurrent neural networks (RNNs)
•	 Generative adversarial networks (GANs)
A CNN is a DNN that’s typically used for image analysis. 

It can be applied in facial-recognition systems, parsing 
documents, and image segmentation. CNNs are also a type 
of space invariant artificial neural networks (SIANNs).

A CNN model essentially implements filters via the 
training process. The bias and activation operations 
include a Frobenius inner dot product. The model includes 
convolutional and pooling layers. 
The number of inputs and outputs 
of a convolutional layer are typically 
the same. The pooling layers reduce 
the number of outputs. This is often 
accomplished by getting an output, 
which involves taking the maximum 
input value or average of a group of 
inputs.

An RNN’s perceptrons take their 
output as the input to the next set of data 
(Fig. 4). A dataflow implementation 
would typically include latched inputs 
so that the output could be used in the 
subsequent calculation. Oftentimes, 
RNNs are used to analyze audio streams, 
text, and time series information. 

The GAN is a neural network 
designed to generate an output that’s 
similar to the input. For example, a 
GAN model could change a cat into a 
dog that would have the same pose, etc. 
This type of model is able to unpaint 
pictures or upscale video. 

A GAN consists of a generator network and a 
discriminative network. The former creates candidates 
based on the inputs and the latter evaluates the new data. 
Each must be trained with the discriminative network being 
trained with inputs, much like how a CNN would be trained. 
The generator is typically a deconvolutional neural network 
that’s trained to increase the error rate of the discriminative 
network. 

Multicore vs. Data-Flow Acceleration
Neural-network models are like applications. They’re 

specifications that can be implemented in a number of ways, 
from a software application to a hardware implementation. 
Hardware implementations are typically faster and use less 
power, thus providing more performance such as the ability 
to analyze video streams in real-time. 

A very, very large number of calculations is the reason that 
hardware acceleration is often required in AI applications, 
but this is related to the input size and model complexity. 
Video applications typically benefit from hardware support. 

Hardware-acceleration approaches can be divided into 
data-flow or application-specific support, targeted multicore, 
and instruction set augmentation. Most ML/AI chips go 
with data-flow or targeted-multicore implementations. The 
latter is often a DSP or single-instruction, multiple-data 
(SIMD) architecture that’s customized for AI/ML models. 
An example of instruction set augmentation is Arm’s 
Cortex-M55, which adds instructions that improve support 

4. Recurrent neural networks (RNNs) provide each perceptron with a feedback loop. 
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for AI/ML-related numeric encodings and computations 
such as matrix manipulation. 

AI/ML models can be implemented using double-
precision floating point, but that tends to be very inefficient 
for various reasons. Using more compact formats like 8- 
and 16-bit floating point, and 8-bit fixed point, significantly 
reduces storage requirements, calculation hardware, and 
calculation time, thereby lowering power requirements 
while improving performance. 

Another aspect deals with sparse networks. It turns out 
that in many cases, weights are often zero or very close to 
zero. This enables those calculations and the data movement 
to be eliminated by optimization. Much of it is hidden 
behind model compilers that accept models from standard 
frameworks like TensorFlow and Caffe2. 

Another consideration with respect to hardware involves 
multiple models and splitting models across different types 
of hardware. Many times, multiple models are used to 
provide more functionality based on the same input or to 
address different aspects of the overall application. 

For example, an electric car may have an advanced driver-
assistance system (ADAS) or fully autonomous-driving 
system that uses object recognition and other models to 
handle preventative maintenance for the electric motors. 
Targeted or sophisticated system-on-chip (SoC) solutions 
are often designed to handle this mixture. 

The splitting of models makes sense because the hardware 
support for different parts of the model can vary. Multicore 
microcontrollers like Eta Compute’s ECM3532 includes a 
Cortex-M4 and NXP CoolFlux DSP. The latter is augmented 
to handle AI/ML models, but the Cortex-M4 can help. 

Making Decisions for Applications
Choosing models and hardware platforms to support 

them can be complex. They can probably use an AI model 
if someone would make it. On the plus side, this type 
of support can be approached in different ways if your 
application would benefit from AI/ML support. 

The first way is easy: Use a product with AI support that 
requires minimal or no training. Many robotic sensors 
targeting the educational market fall into this category. They 
are essentially smart sensors that provide feedback to a host, 
such as “red obstacle 15 cm ahead.” 

The majority of uses fall into the next category: Utilizing 
predefined and often pretrained models on hardware of 
your choice. This may require choosing a model, and usually 
the available models will be based on the hardware choice 
or vice versa. This is the advantage of using platforms like 
TensorFlow or Caffe, since hardware vendors have chosen 
to support these. Likewise, performance numbers are often 
available, so you can gauge what platform may be suitable 
for your application. 

If a model is available and you have the data to train it, 
then the problem often reverts to a standard engineering 
challenge of balancing and optimizing cost, performance, 
power, and capacity. You may have much more work to do if 
the models that exist don’t quite match your needs. 

Creating a new model is only for those with big bucks, 
lots of time, or lots of expertise. This is where the experts 
come in—even companies and organizations are using AI 
to create models. You can also wait until someone develops 
a model that you can use, although working with an 
unsupported, open-source model may not be the best choice 
for a commercial product. Like many open-source software 
projects, you may have to support yourself. 

The challenge these days is that the technology and 
availability of AI/ML solutions is changing so quickly. 
Compiler improvements can sometimes double performance, 
making a lower-end platform capable of handling your 
application when it couldn’t do so with the earlier version. 
Likewise, many new chips with AI enhancements or 
dedicated chips are becoming available, and new processor 
designs are regularly including instruction set extensions 
and data formats amenable to AI/ML models. 
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