
By RICARDO JIMENEZ, Imperial Valley College, Imperial, Calif.,
and GABRIEL LEE ÁLVAREZ, Instituto Tecnológico de Mexicali,
B.C. México.

This project pairs a set of 8-bit
microcontrollers with a 433-MHz
industrial, scientific and medical
(ISM) band transmitter/receiver. The
FS1000A RF transmitter has a range
of up to 200 m; the XY-MK-5V RF
receiver operates at 5 V and uses only 4 mA (Fig. 1). These
modules are readily available and used in projects with plat-
forms like Arduinos.

The projects uses Microchip PIC microcontrollers includ-
ing the 16F1619 and 16F1614. These utilize the radio mod-
ules employing the on-chip EUSART (Enhanced Universal
Synchronous/Asynchronous Receiver Transmitter) interfaces.
On the transmitter side, we use the PIC’s analog and digital
interfaces to read a voltage and a frequency source within the
range of 0 to 4.99 V dc and 0 to 65.5 kHz, respectively.

The logic diagram for the transmitter (Fig. 2) includes an
LCD display to provide feedback. Listing 1 has the code for
the 16F1619.

The receiver side (Fig. 3) also includes a pair of LCD dis-
plays. The displays aren’t needed in an application, but they’re

handy for debugging. Listing 2 has the code for the 16F1614.
Serial Communication
First, we will touch on the serial communication support

that’s tied to the wireless modules. To establish communica-
tion, it’s necessary to have a starting bit for a period of time
to alert the receiver that a data package is about to be trans-
mitted. This forces the receiver clock to start synchronization
with a 0 bit. Then each bit is sent individually, starting with
the LSB bit through the MSB bit (see table). Each bit has the
same period. Once all bits are transmitted, it must wait for the
Stop bit to indicate end of transmission. This is achieved with
a High logic, where the communication ends.

To transmit the alphanumeric character “A,” whose ASCII
code is 0b01000001 (Fig. 4), the bits are organized as shown in
the table. Each bit has a period determined by the transmis-
sion speed (baud rate), which can vary from 115.2 kb/s to 200
bits/s. The time for each bit is given by:

To transmit a voltage, we will read it using the 10-bit analog-
to-digital converter (ADC), which by default has its reference
voltage connected to 5 V. This defines the ADC resolution:

To perform the binary to decimal conversion, we use this
code:

Microcontroller Sends
Voltage and Frequency
via Low-Cost Modules
In this Idea for Design, voltage and frequency can be sent wirelessly using PIC
microcontrollers.

1. The FS1000A RF transmitter (right) has a range of up to 200 m. The

XY-MK-5V RF (left) receiver operates at 5 V and uses only 4 mA.

☞LEARN MORE @ electronicdesign.com | 1

https://sourceesb.com/microchiptechnology/distributors-and-vendors
https://sourceesb.com/microchiptechnology-parts-starting-with-pic16F1619
https://sourceesb.com/microchiptechnology-parts-starting-with-pic16F1614
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

VINBCD = VIN*4887	 ; multiplying by RE-
Slsb = 4.8887
VR = div32 1000	 ; perform 16-bit division

where VIN is the binary voltage read by the
ADC, and VR is the voltage result.

TIMER1 takes care of reading frequencies
and is configured to read the number of pulses
in one second. After that, the PIC transmits and
receives those readings. With the data ready, the
instruction HSEROUT sends the serial data.
The code is always waiting to be activated by the
user. Once activated, it sends a control variable
to the receiving unit with the instruction HSE-
ROUT, which is sent at a speed of 2400 bits/s.
This variable indicates that data transmission is
starting:

HSEROUT [“BZ0”,10]; SEND ACTIVATION
INSTRUCTION

For the transmitter code, it’s necessary to
read a voltage and frequency with the micro-
controller’s ADC and TIMER1, respectively.
The maximum frequency is:

Then the code proceeds to obtain each deci-
mal digit with the command DIG, and each dig-
it is sent at 2400 bits/s with the serial data with
the instruction Hserout. Two digits in ASCII
code are inserted at the beginning of each data
package, so that the receive identifies which
data is receiving.

HSEROUT [“BZ”,DEC A,10];
HSEROUT [“AZ”,VD[3],VD[2],VD[1],

VD[0],10]; send serial data
HSEROUT [“CZ”,H[4],H[3],H[2],H[1]

,H[0],10];

When the receiver gets the data “BZ,” it repre-
sents the activity control in the serial port. The
data package AZ represents the Voltage, while
the data package CZ represents Frequency.

When the Micro receives the stop instruction

2. The transmit module is tied to the PIC16F1619 microcon-

troller. The voltage and frequency inputs are not shown. Our

transmitter prototype uses a potentiometer to adjust the volt-

age and frequency inputs.

☞LEARN MORE @ electronicdesign.com | 2

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

with the pushbutton, it transmits a “1” in the control data
package, indicating end of transmission.

The receiver waits for the control variable BZ with the in-
structions HSERIN and WAIT, which waits specifically for
the data “BZ”. Because that RF data transmission has exter-
nal noise, after receiving the data BZ, the next data is stored
in a variable to manipulate as follows:

HSERIN 10,MAIN1,[WAIT(“BZ”), STR A\1]; wait one
second to receive instruction

When the second micro receives the control variable, it
starts the data input where the instructions HSERIN wait
for ASCII codes in each package that’s transmitted. If it
doesn’t receive any data, the code jumps to the next instruc-
tion as follows:

HSERIN 10,JUMP1,[WAIT (“BZ”), STR A\1]
JUMP1: HSERIN 100,JUMP2,[WAIT (“AZ”), STR VD\4]
JUMP2: HSERIN 10,HERE, [WAIT (“CZ”), STR H\5]

When the data is received, it’s transferred to two LCD
displays. By using a CMOS switch HCF4066, it’s possible to
control the Enable and R/W functions in each LCD. Two
bits in the microcontroller select which LCD will be operat-
ing as shown in the following code:

LCD1 = 1	 ; ENABLE LCD1
LCD2 = 1	 ; ENABLE LCD2
The receiver PIC microcontroller drives two 16X2 LCD

displays controlled by a quad CMOS switch—HCF4066—
configured as multiplexer to select which LCD will receive
data. In this case, the first LCD shows Voltage, and the sec-
ond one shows Frequency.

For the receiver, we use the instruction HSERIN, which
receives two ASCII characters, and then saves the respective
data of both characters.

Ricardo Jimenez, holds a Master’s degree in Electronics En-
gineering. He is the author of several Lab Practices Notebooks
on PIC Microcontrollers applied to Instrumentation.

Gabriel Lee Alvarez is pursuing his Electronics Engineering
degree at Instituto Tecnologico de Mexicali (ITM).

3. The receiver is based on a PIC16F1614 that handles incoming mes-

sages to display on the LCD displays. For the receiver side, we have

the voltage and frequency displayed on different LCD displays.

☞LEARN MORE @ electronicdesign.com | 3

https://sourceesb.com/parts/search?q=HCF4066
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

Listing 1: Code for the PIC16F1619 Used as a transmitter

; WIRELESS VOLTMETER/FREQ RF RS232
TRANSMITER

; PBP3 COMPILER from melabs.com
; Authors: Ricardo Jimenez and Gabriel Lee Alvarez
; © July 13, 2020
; PIC16F1619
; TRANSMITTER PIC16F1619
 #CONFIG
 __config _CONFIG1, _FOSC_INTOSC & _PWRTE_

ON & _MCLRE_OFF & _CP_OFF & _BOREN_ON & _
CLKOUTEN_OFF

 __config _CONFIG2, _WRT_OFF & _PPS1WAY_OFF
& _ZCD_OFF & _PLLEN_OFF & _STVREN_ON & _BORV_
LO & _LVP_OFF

 __config _CONFIG3, _WDTCPS_WDTCPS4 & _
WDTE_ON & _WDTCWS_WDTCWS100 & _WDTCCS_
LFINTOSC

 #ENDCONFIG
DEFINE OSC 16;
OSCCON = %01111010; intenal Osc set to 16 MHZ
OSCTUNE = 0
OSCSTAT = %00011111;
TRISA = %00111110; RA0 AS A OUTPUTS,

RA1:RA2:RA3:RA4:RA5 AS A INPUTS
ANSELA = %000100; RA0:RA1:RA4:RA5 AS

DIGITAL,RA2:RA3 AS ANALOG,
TRISC = %100000;RC0:RC1:RC2:RC3:RC4 AS OUTPUTS,

RC5 AS INPUTS
TRISC=0; Clearing PORTC
TRISB = 0; Clearing PORTB
ANSELB = 0; PORTB set as digital
;PPSLOCK=0;
;ANSEL PULL-UP resistors disabled
WPUA = 0; AC = 0;
WPUC = 0; PULL-UPS DISABLED
OPTION_REG.7 = 0; PULL-UPS ENABLED

WPUA.3 = 1; PULL-UP IN RA3 ENABLED
T1CON = %10000101; TMR1 ENABLED

ADCON0 = %00001111;AN3 IS ENABLED
ADCON1 = %10000000; FOSC/2, VDD
;---------------------------------
DEFINE HSER_RCSTA 90h; RX MODULE IS ENABLED
DEFINE HSER_TXSTA 20h; TX MODULE IS ENABLED
DEFINE HSER_BAUD 2400; BAUD RATE IS 2400
rc1sta.7 = 1; SERIAL COMUNICATION IS ENABLED
RB7PPS = %10010;

;--LCD CONFIGURATION ----------------------
DEFINE LCD_DREG PORTC ‘ PORTC is LCD data port
DEFINE LCD_DBIT 0 ‘ PORTC.0 is the data LSB
DEFINE LCD_RSREG PORTA ‘ RS is connected to

PORTA.0
DEFINE LCD_RSBIT 0
DEFINE LCD_EREG PORTA ‘ E is connected to PORTA.1
DEFINE LCD_EBIT 1
DEFINE LCD_BITS 4 ‘ 4 data line
DEFINE LCD_LINES 2 ‘ 2-line display
DEFINE LCD_COMMANDUS 1500 ‘ Use 1500uS

command delay
DEFINE LCD_DATAUS 44 ‘ Use 44uS data delay
;;---

LCDOUT $FE,$28; $28 FUNCTION SET, 4 BITS
LCDOUT $FE,$10; $10 SHIFT DISPLAY
LCDOUT $FE,$0C; $0C DISPLAY ON
LCDOUT $FE,$06; $06 ENTRY MODE SET
;---
;CREATING ALIAS
;TX VAR PORTC.0;;
PB VAR PORTA.3
;----
;---VARIABLES
X VAR byte[4];
Y VAR WORD;
VIN VAR WORD;
VINBCD var word
H VAR BYTE[5];
TMR VAR WORD;
VD var byte[4];

4. This timing diagram shows an ASCII character A (0b10000010) using the usual asynchronous process with a start bit and the trailing stop bit.

☞LEARN MORE @ electronicdesign.com | 4

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

A VAR BIT
IN var byte;
OUT VAR BYTE;
;--------
A = 1
for x = 0 to 5
vd[x] = “0”;
h[x] = “0”;
next x
;send a message to the LCD
LCDOUT $FE,$80,”FREQUENCY METER-”;
LCDOUT $FE,$C0,”--VOLTMETER RF--”;
PAUSE 2000;
TMR = 0;
T1CON.0 =0; T1CON input Frequency DISABLED
MAIN

LCDOUT $FE,$80,”FREQUENCY METER-”;
LCDOUT $FE,$C0,”--VOLTMETER RF--”;
;---------
IF PB = 0 THEN; wait for Push button to go Low
 PAUSE 150
 A = 0; CONTROL VARIABLE IS 0
 FOR X= 0 TO 3;
 HSEROUT [“BZ0”,10]; SEND ACTIVATION

INSTRUCTION
 NEXT X;
ENDIF;

IF A = 0 THEN; START QUESTION FOR CONTROL
variable

 LCDOUT $FE,$80,” START “;
 LCDOUT $FE,$C0,” TX “;
 PAUSE 1000;
 TMR1L = 0;CLEAR TIMER
 TMR1H = 0;
 T1CON.0 = 1; ENABLES TIMER

 STAY:;
 T1CON.0=1;
 PAUSE 1000
 T1CON.0=0; TIMER DISABLED
 GOSUB ADC;
 GOSUB H_DEC; GO TO h_DEC AND RETURN;
 GOSUB SHOW_LCD; GO TO SHOW_LCD AND

RETURN
 GOSUB SEND;

 if pb = 0 then; wait for Push button to go high
 A = 1; CONTROL variable is 1, END

TRANSMISSION
 PAUSE 200;

 ENDIF;

 IF A = 0 THEN STAY; If CONTROL IS “0” GO TO STAY
 A = 1;; CONTROL VARIABLE IS “1”
 FOR X = 0 TO 2;
 GOSUB SEND
 NEXT X
 LCDOUT $FE,$80,” END “;
 LCDOUT $FE,$C0,” TX “;
 PAUSE 1000
ENDIF

goto main;
ADC:;
ADCON0.1 = 1; ENABLE ADC MODULE
HERE1: IF ADCON0.1 = 1 THEN HERE1; CONVER-

SION in progress
VIN.BYTE0 = ADRESL; SAVE LOWER REGISTER OF

THE ADC IN VARIABLE VIN
VIN.BYTE1 = ADRESH; SAVE HIGHER REGISTER OF

THE ADC IN VARIABLE VIN
disable; DISABLE INTERRUPTS
VINBCD = VIN*4887; MULTIPLYING BY RESLSB

= 4.8887
VIN = div32 1000; PERFORM 16-BIT DIVISION
enable; ENABLE INTERRUPTS
FOR X = 0 TO 3; START LOOP
IN = VIN DIG X; GET DIGIT X
LOOKUP IN,[“0123456789ABCDEFG”],OUT; DIGITS

DECODING
VD[X] = OUT; SAVE DECODED DIGITS
NEXT X;
return;

SHOW_LCD:; display LABEL on LCD
 LCDOUT $FE,$80,”HZ= “,H[4],H[3],H[2],H[1],H[0],”

“;
 LCDOUT $FE,$C0,”V= “,VD[3],”.”,VD[2],VD[1],VD[0],”

“;
RETURN;

SEND:; LABEL SEND;
 HSEROUT [“BZ”,DEC A,10];
 HSEROUT [“AZ”,VD[3],VD[2],VD[1],VD[0],10]; SEND

SERIAL data
 HSEROUT [“CZ”,H[4],H[3],H[2],H[1],H[0],10];

RETURN;

H_DEC:; LABEL h_DEC;
TMR.BYTE0 = TMR1L ; OBTAIN LOWER REGISTER OF

TIMER1

☞LEARN MORE @ electronicdesign.com | 5

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

TMR.BYTE1 = TMR1H; OBTAIN HIGHER REGISTER
OF TIMER1

FOR X = 0 TO 4; START LOOPS
 IN = TMR DIG X; OBTAIN DIGITS
 LOOKUP IN,[“0123456789”],OUT; DECODING DIG-

ITS
 H[X] = OUT; SAVE DIGITS
NEXT X; NEXT LOOPS
TMR1L = 0; CLEAR TIMER
TMR1H = 0;
RETURN;
END;

Listing 2: Code for the PIC16F1614 Working as a RF Re-
ceiver

; PBP3 COMPILER from melabs.com
; Authors: Ricardo Jimenez and Gabriel Lee Alvarez
; © July 13, 2020
; PIC16F1614 for the Receiver module
;Include “modedefs.bas”; include library
OSCCON = %01111010; 16 MHZ
OSCTUNE = 0;
OSCSTAT = %00011111; PLL IS OFF,HFINTOSC AND

MFINTOSC IS READY

DEFINE OSC 16; CLOCK SET TO 16MHZ
TRISA = %0000000; ALL PINS ARE OUTPUTS
ANSELA = %000000; ALL PINS ARE DIGITAL
WPUA = 0; INTERN PULL-UPS DISABLED
TRISC = %100000; RC5 INPUT, RC0:RC4 OUTPUTS
ANSELC = 0; ALL PINS ARE DIGITAL
WPUC = 0; INTERN PULL-UPS IS DISABLED
OPTION_REG.7 = 0; WEAK PULL-UPS ENABLED BY

INDIVIDUAL WPUX
;----UART-HSERIN CONFIGURATION------
RXPPS = %10101; EUSART CR/RX PORTC.5
DEFINE HSER_RCSTA 90h; RECEIVER ENABLED
DEFINE HSER_TXSTA 20h; TRANSMITTER ENABLED
DEFINE HSER_BAUD 2400; 2400 BAUD RATE
DEFINE HSER_CLROERR 1; CLEAR OVERRUN ERROR
rc1sta.7 = 1; SERIAL PORT IS ENABLED
;--LCD CONFIGURATION ----------------------
DEFINE LCD_DREG PORTC; PORTC IS A DATA PORT
DEFINE LCD_DBIT 0 ; RC0 IS THE LSB,

RC1,RC2,RC3 ARE MSB
DEFINE LCD_RSREG PORTC ‘ RS IT IS IN PORTC
DEFINE LCD_RSBIT 4; RS IN RC4
DEFINE LCD_EREG PORTA ; EN IS IN PORTA
DEFINE LCD_EBIT 0; RA0 IS EN
DEFINE LCD_BITS 4 ‘ 4 ; IMES
DEFINE LCD_LINES 2 ‘ It is a 2-line display
DEFINE LCD_COMMANDUS 1500 ; Use 1500uS com-

mand delay
DEFINE LCD_DATAUS 44 ‘ Use 44uS data delay
;;---
;----SET ALIAS--------
PB VAR PORTA.3
LCD1 VAR PORTA.1;
LCD2 VAR PORTA.2;
;----CREATE VARIABLES-----
X VAR byte;
VIN VAR WORD;
VIN2 var word
VD var byte[4];
Y VAR BYTE;
H VAR BYTE[5];
A VAR BYTE;
R VAR BYTE[7]
IN var byte;
OUT VAR BYTE;
;----
;-CLEAR VARIABLES--
FOR Y = 0 TO 5;
VD[Y] = “0”
H[Y] = “0”
NEXT Y;
X =0;

;---INITIALIZE LCD--------------------
LCD1 = 1; ENABLE LCD1
LCD2 = 0; DISABLE LCD2
PAUSE 10;
LCDOUT $FE,$28; $28 FUNCTION SET, 4 BITS
LCDOUT $FE,$10; $10 SHIFT DISPLAY
LCDOUT $FE,$0C; $0C DISPLAY ON
LCDOUT $FE,$06; $06 ENTRY MODE SET
;---
LCD1 = 0; DISABLE LCD1
LCD2 = 1; ENABLE LCD2
PAUSE 10;
LCDOUT $FE,$28; $28 FUNCTION SET, 4 BITS
LCDOUT $FE,$10; $10 SHIFT DISPLAY
LCDOUT $FE,$0C; $0C DISPLAY ON
LCDOUT $FE,$06; $06 ENTRY MODE SET
;--------------------------------------
LCD1 = 1; ENABLE LCD1
LCD2 =1; ENABLE LCD2
PAUSE 1;
LCDOUT $FE,$80,”---VOLTMETER----”;
LCDOUT $FE,$C0,”--RF RECEIVER---”;

PAUSE 1000
MAIN:

☞LEARN MORE @ electronicdesign.com | 6

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

LCD1 = 1; ENABLE LCD1
LCD2 = 0; DISABLE LCD2
PAUSE 1;
LCDOUT $FE,$80,”----WAITING-----”;
LCDOUT $FE,$C0,”----VOLTAGE-----”;

LCD1 = 0; ENABLE LCD1
LCD2 = 1; DISABLE LCD2
PAUSE 1;
LCDOUT $FE,$80,”----WAITING-----”;
LCDOUT $FE,$C0,”---FREQUENCY----”;
LCD1 = 1; ENABLE LCD1
LCD2 = 1; ENABLE LCD2
;ON INTERRUPT GOTO READ_UART
MAIN1:
HSERIN 10,MAIN1,[WAIT(“BZ”), STR A\1]; WAIT 1S

TO RECEIVE INSTRUCTION

if a = “0” then
 LCD1 = 1; ENABLE LCD1
 LCD2 = 1; ENABLE LCD2
 PAUSE 1;
 LCDOUT $FE,$80,” STARTING “;
 LCDOUT $FE,$C0,” RX “;
 PAUSE 1000;
 HERE_START:
 HSERIN 10,JUMP1,[WAIT (“BZ”), STR A\1]
 JUMP1:HSERIN 100,JUMP2,[WAIT (“AZ”), STR VD\4]
 JUMP2:HSERIN 10,HERE, [WAIT (“CZ”), STR H\5]
 HERE:;
 LCD1 = 1; ENABLE LCD1
 LCD2 = 0; DISABLE LCD2
 PAUSE 2;
 LCDOUT $FE,$80,”RECEIVED VOLTAGE”;
 LCDOUT $FE,$C0,VD[0],”.”,VD[1],VD[2],VD[3],” “;
 HERE3:; LABEL HERE3
 LCD1 = 0; DISABLE LCD1;
 LCD2 = 1; ENABLE LCD2
 PAUSE 2;
 LCDOUT $FE,$80,” FREQUENCY “;
 LCDOUT $FE,$C0,H[0],H[1],H[2],H[3],H[4],” HZ “;
 ;ENABLE
 LCD1 = 1; ENABLE LCD1;
 LCD2 = 1; ENABLE LCD2;
 ;ENABLE INTERRUPT
 if a = “0” then HERE_START
 LCD1 = 1; ENABLE LCD1
 LCD2 = 1; ENABLE LCD2
 PAUSE 1
 LCDOUT $FE,$80,” END “;
 LCDOUT $FE,$C0,” RX “;
 PAUSE 1000 ;
endif
goto main;
END

☞LEARN MORE @ electronicdesign.com | 7

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

