
DR. THOMAS GALLA, Chief Expert Automotive Networks,

Elektrobit, https://www.elektrobit.com/

F
or many decades, software developers benefitted from
being able to use the same software code while work-
ing with increasingly powerful hardware. As hardware
manufacturers regularly improved the performance of

their semiconductors by enhancing transistor densities and
clock speeds, software development enjoyed a “free ride”—
they were able to readily develop on these new devices without
having to change software architectures.

However, processing power has hit a wall due to the limit
in increasing clock speeds. As a result, chip manufacturers
have been turning to dramatically new approaches to achieve
further performance gains. First it was hyper-threading
and homogeneous architectures, and then heterogeneous
multicore architectures. To benefit from these hardware
changes, existing software had to be parallelized and modified
to deal with the heterogeneity.

Modern microcontrollers (MCUs) and systems-on-a-chip
for automotive, such as Infineon’s AURIX 2G or NVIDIA’s
Drive Xavier, point to the trend toward homogeneous, and
even heterogeneous, multicore hardware architectures.
To benefit from these advances in hardware, changes in
automotive software are required as well.

In this article, I will discuss how standardized software
architectures, specifically AUTOSAR’s layered software
architecture, are being updated with today’s powerful MCUs
to enable dramatically improved performance.

Optimizing AUTOSAR for Multicore Architectures
A critical enhancement to the AUTOSAR software

architecture has been the distribution of the AUTOSAR
communication stack over different cores, which is
mandatory for realizing the performance benefits of multicore
architectures.

As background, in AUTOSAR 4.0.1, support for multicore
MCUs was first introduced. In this update, AUTOSAR
provided the means to allocate application software
components (SWCs) to dedicated cores and facilitated the
cross-core communication between those SWCs via the
runtime environment (RTE). AUTOSAR basic software
(BSW), however, was still allocated to a single core.

In AUTOSAR 4.2.1, the AUTOSAR basic software
was divided into so-called functional clusters that could
be allocated to different cores using the BSW schedule
manager (SchM) for inter-core communication. Since the
communication stack as a whole is such a functional cluster,
distribution of the communication stack over multiple cores
wasn’t supported. And, although AUTOSAR 4.4 introduced
the possibility to distribute the BSW modules of the lowest
layer (the microcontroller abstraction layer), the remainder
of the AUTOSAR communication stack still had to be placed
onto a single core.

At this point in the evolution of AUTOSAR, it became
obvious that a monolithic communication stack allocated
to a single core would eventually become the performance
bottleneck. That’s because the sequential part of the software
would continue to impose a theoretical limit on the speeds
achieved by a multicore MCU. Hence, it led to the fresh
approach of distributing the communication stack over
the different cores, which is a necessity for reaping the
performance benefit of multiple cores.

When working on communication stack software
distribution, it’s important to consider the following to make
efficient use of the multicore resources:

• Inter-core communication and synchronization should be
reduced as much as possible, since they typically involve inter-
core interrupts that in turn lead to changes in the MCU’s

Software must be parallelized and modified to benefit from new approaches to
enhance hardware performance in today’s automotive designs. AUTOSAR’s layered
software architecture leverages MCUs to meet the latest demands.

Unleash Multicore-
Processor Performance in
Automotive Architectures

☞LEARN MORE @ electronicdesign.com | 1

https://www.elektrobit.com/
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

operation mode (transition from user to supervisory mode),
pipeline stalls, and cache misses.

• If inter-core calls are required and can’t be avoided,
asynchronous calls should be favored over synchronous ones.
The latter block the caller until the callee is finished, thereby
reducing the degree of parallelism and thus the potential
speedup. Unfortunately, this isn’t always possible since, for
legacy reasons, AUTOSAR’s communication stack makes
heavy use of synchronous APIs and changing that would be a
major backwards-incompatible redesign.

• In addition, inter-core mutual exclusion by means of locks
should be avoided if possible, because this blocks all other
involved cores while one core resides in the exclusive area.
Since typical inter-core mutual exclusion primitives like
spinlocks involve busy waiting, this also wastes CPU cycles on
the blocked cores.

• Another crucial consideration is the proper placement
of code and data required by the non-uniform memory
architecture used by most multicore MCUs. Memory is divided
into core-local memory (caches, flash, and RAM) dedicated
to a single core, which can be accessed quickly and conflict-
free by that core, and global memory (flash and RAM), which
is shared among the different cores and where access to this
memory is substantially slower and subject to conflicts. In
such a non-uniform memory architecture, proper placement
of code and data is critical. Frequently accessed code and data
needs to be placed as close to the accessing core as possible.
Using the static AUTOSAR memory-mapping mechanisms,
such placement should be performed based on access statistics
derived under realistic load scenarios.

Stack Distribution Strategy
With these considerations in mind, we

can develop the general distribution strategy
for the AUTOSAR communication stack.
We split the communication stack into sub-
stacks based on the particular network type
(i.e., CAN, LIN, FlexRay, and Ethernet) and
allow each of these sub-stacks to be allocated
to a dedicated core. Thus, any potentially
concurrent access to the communication
hardware peripherals (i.e., CAN, LIN,
FlexRay, and Ethernet controllers) from
different cores can be ruled out. In addition,
fully independent and parallel execution of
the different sub-stacks is possible without
interaction among them.

To drive this separation and independence
even further, we split the general network-
type independent BSW modules of the
communication stack (i.e., IpduM and Com)
into different parts. Each part is equipped

with a dedicated processing function that takes care of
processing the subset of the communication originating from,
or targeting to, a particular network type. Those dedicated
processing functions are then allocated on the dedicated core
for the respective network type.

By doing this, we effectively keep all of the communication
of a particular network type local to a single core and rule
out interference with the communication of any other
network type. Thus, we avoid inter-core communication and
synchronization, maximize the independent execution of the
different communication sub-stacks, and are able to keep
most of the AUTOSAR communication stack’s synchronous
API calls local to the respective core.

The communication paths originating on one network
type and targeting some other network type (i.e., gateway
routing paths), and communication paths targeting multiple
network types (i.e., multicast routing paths), are handled by
a multicore-capable PDU router (PduR). The PduR takes care
of the required core transitions in those routing paths using
the SchM’s intercore communication capabilities. Buffering or
queuing within the PduR facilitates the use of asynchronous
(instead of synchronous) inter-core calls. This results in a
decoupling of caller and callee, and thus keeps the execution
of the sub-stacks for the different network types independent
even for these kinds of communication paths.

This kind of core allocation of the AUTOSAR
communication stack results in the multicore communication
stack architecture (see figure).

Successful OEM Implementations
The approach described here has been successfully

This multicore communication stack architecture is by means of core allocation of the

AUTOSAR stack.

☞LEARN MORE @ electronicdesign.com | 2

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

implemented and deployed in two real-life automotive series
projects for a major German car manufacturer. The first project
dealt with the central gateway electronic control unit (ECU)
of a premium vehicle that required a vast amount of data
to be routed between different networks and exhibited very
complex routing paths. In this setup, an STMicroelectronics
Chorus 6M MCU was used, where the CAN, FlexRay, and
Ethernet sub-stacks were each allocated to dedicated cores.

The second project dealt with a powertrain domain master
ECU exhibiting time-critical event chains involving multiple
ECUs and requiring strictly deterministic timing on several
CAN networks. In this setup, an Infineon AURIX 2G MCU
was used, where the CAN and LIN sub-stacks were allocated
on one core and the FlexRay and Ethernet sub-stacks were
allocated on another core.

Due to the reduced number of communication paths
crossing core boundaries in this project, almost no overhead
for inter-core communication and synchronization (less
than 1% additional CPU load) was measurable. As far as
memory mapping is concerned, we gathered access statistics
under realistic load scenarios and optimized the memory
mapping for frequently accessed code and data. The optimized
memory mapping reduced CPU load by 15% compared to an
unoptimized memory mapping.

Summary
The efficient use of multicore MCUs requires distribution

of the AUTOSAR basic software in general, and particularly
of the communication stack. We proposed to split the
communication stack according to the different network types
to prevent concurrent access to the communication hardware
peripherals, to allow for fully independent and parallel
execution of the different sub-stacks, and to reduce the need
for inter-core communication and synchronization.

We recommend locating code and data within memory with
a strong affinity to the respective core using AUTOSAR’s static
memory-mapping functionality to properly use fast core-
local memory as well as prevent/reduce conflicts upon access
to slower global memory. Implementing this approach and
deploying it in two series projects for a major German OEM
showed that by means of distributing the communication
stack and doing a proper allocation of the application software
components, an efficient use of the multiple cores of an AURIX
2G MCU can be achieved. And there’s almost no overhead for
inter-core communication and synchronization.

Dr. Thomas Galla is chief expert of
automotive networks at Elektrobit. In this
role, he’s focused on AUTOSAR-based
ECU development, multicore software, and
communication stacks. Thomas has over 15
years of experience in his field. He earned

his Master’s in computer science from Vienna University of
Technology in 1995 and received his Ph.D in 2000.

☞LEARN MORE @ electronicdesign.com | 3

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

