Electronic Design.

Gain-Bandwidth Product is Not (Always) Constant

Gain-bandwidth is always constant, isn't it? Using the inverting single-pole op amp as an example, this article explains why that often-held belief is a fallacy.

Marking amplifiers, I sometimes get
the impression that whole groups of
electronics hobbyists and engineering
students have been brainwashed by end-
lessly hearing and repeating the mantra "Gain-bandwidth
product is a co the impression that whole groups of electronics hobbyists and engineering students have been brainwashed by endlessly hearing and repeating the mantra "Gain-bandwidth product is a constant." Hearing this statement so often, they actually start to believe this is a universal truth.

I was reminded of this once again some time ago, when I saw a video on the otherwise excellent YouTube channel "w2aew" The video has been titled "#172: Basics of Op Amp Gain Bandwidth Product and Slew Rate Limit"1. Around minute 2:23, the host says "...for a single-pole response, the product of the DC-gain and the bandwidth is constant." However, this statement isn't universally true—sometimes it's true, sometimes it's approximately true, and sometimes it's completely wrong.

You might have thought I was going to tell you about the case of a voltage amplifier with a current feedback op amp—a statement that you probably already knew isn't true—but I am not. Instead I'll focus on what's probably the simplest op-amp voltage amplifier configuration you can imagine, the mother of all op-amp circuits: the inverting single-pole opamp amplifier shown in *Figure 1*.

To avoid confusion, let's first define all symbols that will be involved *(see table)*. To deduce the connection between *AOL,*0*, BW_{OL}*, $A_{CL,0}$, and *BW_{CL}*, all we need to do is apply Kirchhoff's law to the inverting node of the op amp. We assume our op amp is or can be approximated by a single-pole model, which means we can write:

$$
\overline{A}_{OL} = \frac{A_{OL,0}}{1 + j\frac{f}{BW_{OL}}} \tag{1}
$$

Applying Kirchhoff 's law gives:

$$
\tfrac{\overline{v}_{in}+\overline{\varepsilon}}{R1}+\tfrac{\overline{v}_{o}+\overline{\varepsilon}}{R2}=0
$$

1. Standard inverting op-amp amplifier.

Symbols Used in Article

2. Amplitude characteristics for a standard inverting op-amp amplifier.

We also have:

 $\overline{v_{0}} = \overline{A}_{OL} \cdot \overline{\epsilon}$

which gives us:

$$
\frac{\overline{\mathrm{v}}_{\mathrm{o}}}{\overline{\mathrm{v}}_{\mathrm{in}}} = -\frac{\mathrm{R2A}_{\mathrm{OL}}}{\mathrm{R2} + \mathrm{R1A}_{\mathrm{OL}} + \mathrm{R1}} \qquad (2)
$$

Substituting Equation 1 in Equation 2 gives:

$$
\overline{A}_{CL} = -\frac{\frac{A_{OL,0} \cdot R2}{R1 + R2 + A_{OL,0} \cdot R1}}{1 + j \cdot \frac{B W_{OL} \cdot (R1 + R2 + A_{OL,0} \cdot R1)}{R1 + R2}} \tag{3}
$$

Equation 3 might look a bit daunting at first sight, but it was intentionally written that way to allow identification with a single-pole representation of the system:

$$
\overline{A}_{CL} = -\frac{A_{CL,0}}{1 + j \cdot \frac{f}{BW_{CL}}}
$$
 (4)

Inspecting Equations 3 and 4, we get:

$$
\begin{cases} BW_{CL} = BW_{OL} \cdot \frac{R1 + R2 + A_{OL,0} \cdot R1}{R1 + R2} \\ A_{CL,0} = \frac{A_{OL,0} \cdot R2}{R1 + R2 + A_{OL,0} \cdot R1} \end{cases}
$$
(5)

Multiplying the respective left and right sides in Equation 5 gives us the following exact formula:

$$
A_{CL,0} \cdot BW_{CL} = A_{OL,0} \cdot BW_{OL} \cdot \frac{R2}{R1 + R2}
$$
 (6)

Equation 6 is seldom used because in most practical cases:

$$
A_{\text{OL},0} \gg 1 + \frac{R2}{R1}
$$

which implies:

$$
A_{CL,0} \approx \frac{R_2}{R_1}
$$

and therefore the equation can be rewritten as:

$$
\left(1 + \frac{R2}{R1}\right) \cdot BW_{CL} = A_{OL,0} \cdot BW_{OL}
$$

\n
$$
\Leftrightarrow \left(1 + A_{CL,0}\right) \cdot BW_{CL} = A_{OL,0} \cdot BW_{OL} \tag{7}
$$

A closer look at Equation 7 shows the cause of the problem with the mantra: Only when $A_{CL,0}$ is substantially greater than 1 can that equation be approximated by $A_{CL,0} \cdot BW_{CL} = A_{OL,0}$. *BWOL* for the standard inverting op-amp amplifier. If this isn't the case, though, we can get a substantial error.

Take, for example, the case of a phase inverter (i.e., *R*1 = *R*2 or $A_{CL,0} = 1$) with a 741 op amp, for which $A_{OL,0} = 200000$ and BW_{OL} = 5 Hz. Using the mantra, we would find a closed-loop bandwidth of 1 MHz. However, using Equation 7, we find the correct bandwidth to be 500 kHz, which means the mantra gives us an overestimation of the bandwidth with a factor 2! More generally, the procentual error on the predicted closedloop bandwidth using the mantra-formula is given by:

$$
\Delta\%=\frac{1}{A_{CL,0}}\cdot 100\%
$$

So, if you want your prediction to be less than 5% off, your closed-loop DC gain should be at least 20 i.e. 26dB.

The graphs in *Figure 2*, which were made using PSpice and a first order op-amp model, also show $A_{CL,0} \cdot BW_{CL} \neq A_{OL,0} \cdot$ BW_{OL}, since the oblique asymptotes of the closed-loop system don't coincide with the one of the open-loop system as is often erroneously drawn in textbooks.2 To clarify this point, consider:

$$
A_{CL} = \frac{A_{CL,0}}{\sqrt{1 + \left(\frac{f}{BW_{CL}}\right)^2}}
$$

For $f \rightarrow \infty$, this becomes:

$$
A_{CL} = \frac{A_{CL,0}BW_{CL}}{f}
$$

Considering the vertical axis in *Figure 2* is in dB and the horizontal axis is logarithmic, we get:

 $20\log(A_{CL}) = 20\log(A_{CL,0}BW_{CL}) - 20\log f$. The term $20\log(A_{CL,0}BW_{CL})$ determines the vertical position of the oblique asymptotes. Because of Equation 7, the latter term is equal to:

$$
20\log\left(\frac{A_{\text{CL},0}}{1+A_{\text{CL},0}}A_{\text{OL},0}BW_{\text{OL}}\right)
$$

and obviously a function of $A_{CL,0}$ itself. Only if $A_{CL,0}$ >> 1, the oblique asymptote of $20\log A_{CL}$ will coincide with the one of $20log A_{OL}$.

As an afterthought, note that for a standard *non*-inverting op-amp amplifier, the mantra-formula is *correct*, but for the standard inverting configuration you'd better memorize (1 + *ACL,*0)*BWCL* = *AOL,*0 *BWOL* from now on.

When actually measuring the bandwidth of the abovementioned unity-gain inverter, don't be surprised if you notice some peaking in the amplitude characteristic. This is caused by a complex pole in the real 741 and the presence of parasitic capacitance between the inverting and non-inverting input of the op amp, but that's another story.

Hugo Coolens received his engineering degree in electronics in 1983 from KIHO Ghent. He is currently head lecturer at the Faculty of Engineering Technology, KU Leuven TC Ghent.

References:

1. <https://www.youtube.com/watch?v=UooUGC7tNRg>

2. *Analog Design Essentials* by Willy M. C. Sansen, p.155

Related articles:

[45-V "Zero-Drift" Op Amp Merges Extreme Precision,](https://www.electronicdesign.com/analog/45-v-zero-drift-op-amp-merges-extreme-precision-emi-filtering) [EMI Filtering](https://www.electronicdesign.com/analog/45-v-zero-drift-op-amp-merges-extreme-precision-emi-filtering)

[Understanding Amplifier Operating "Classes"](https://www.electronicdesign.com/analog/understanding-amplifier-operating-classes)

[A Closer Look at the Common Emitter Amplifier and](https://www.electronicdesign.com/analog/closer-look-common-emitter-amplifier-and-emitter-follower) [Emitter Follower](https://www.electronicdesign.com/analog/closer-look-common-emitter-amplifier-and-emitter-follower)

[What's the Difference Between DC-DC Conversion](https://www.electronicdesign.com/power/what-s-difference-between-dc-dc-conversion-topologies) [Topologies?](https://www.electronicdesign.com/power/what-s-difference-between-dc-dc-conversion-topologies)

Contact:

Ing. Hugo Coolens, KU Leuven, Faculty of Engineering Technology, TC Ghent

hugo.coolens@kuleuven.be