
JEAN J. LABROSSE, Founder, Micrium Software

E
mbedded software devel-
opers are quite familiar
with using a code editor,
a compiler, linker, debug-

ger, and, of course, an evaluation
board. Most of the time, these
tools are all you need to develop
and debug an embedded system.
But what do you do when you
want to verify the operation of
dynamic systems like motor con-
trol, process control, chemical
processes, flight systems, and
more?

Modern processors have
specialized debugging hardware
that allows tools to display
or change memory locations
while the target is running. Let’s
explore how such debugging
hardware can be used to help you visualize the state of your
embedded system with little or no CPU intervention, and
while the target is running.

If you’ve been designing embedded systems for a while, you
know how complex devices have become and how hard they
are to debug. Microcontroller units (MCUs), self-contained
devices (black boxes) with on-chip memory, are packed with
literally hundreds or even thousands of registers that are used
to control the operation of various peripheral devices (Fig. 1).

Every toolchain comes with a debugger, which, at a
minimum, allows you to stop the target and examine variables
and I/O registers (in the watch window) (Fig. 2). Although
quite useful when debugging algorithms have no real-time

component, this capability is
somewhat useless when you can’t
afford to stop the target, e.g., motor
control, process control, etc.

To monitor the proper operation
of a running embedded system,
developers typically revert to a
number of techniques that require
code to be added to the system
being monitored:

LEDS

Developers of embedded
systems typically have access to
at least one LED they can use
to indicate that something is
working; when the light turns
green, the CPU made it to main()
or some other place of interest.
LEDs are great at indicating go/

no-go status. However, if you want to verify the status of
additional operations, you’ll need either more LEDs, or you’ll
have to be creative with the ones you have, e.g., blip patterns,
blink rates, etc.

7-SEGMENT DISPLAYS

Low-cost embedded systems might be equipped with either
LED or LCD 7-segment displays for use by the end user (Fig.
3). The embedded developer can borrow the display during
development to provide an indication of what’s happening in
the embedded system.

A 7-segment display can display numeric values in binary,
decimal, hexadecimal, or even limited alphanumeric values.

Micrium founder Jean Labrosse explains how developers can use debugging hardware
to visualize the state of embedded systems with little or no CPU intervention.

“Why Didn’t I Think of
That?”—Seeing Inside
Embedded Systems

1. How do you see inside a “black box” device like a micro-

controller?

1 ELECTRONICDESIGN..COM

You’re typically limited to the range of values you can display
based on the number of digits available. Also, if you want to
display different values, then you’ll need a way to cycle through
them. If your embedded design doesn’t require a display, then
you might add a display just for testing purposes. Of course,
for this to work, you’ll need to write code for this purpose.

CHARACTER MODULES

Character modules (LEDs or LCDs) are fairly low-cost
devices that you can use as a debugging tool (Fig. 4). Modules
are available that interface through either a parallel port
(requires 6 to 10 output lines) or through a serial interface
(typically UART). Character modules are available in a 1
× 8 (1 line by 8 columns) configuration all the way to 4 ×
40. These displays are easy to use and allow you to display
alphanumerical characters.

As with the 7-segment display technique, you’ll have to
write code to format and position the variables of interest, and
program a way to select different values if the selected display
doesn’t have enough characters for your needs. Character
modules have the added benefit of being able to display bar
graphs. A chapter in Embedded Systems Building Blocks
(see Bibliography) provides a longer explanation of character
modules.

PRINTF()

The printf() function is, in my opinion, one of the most
overused and problematic tools you can turn to. Whenever
you want to display the occurrence of an event or display the
value of variables, you have to format a string, rebuild your
code, download it, and restart your application. The printf()
outputs are generally sent to a debugger text console, an RS-
232C port, or USB. Values “fly off ” the screen once you reach
the number of rows you can display, which oftentimes is more
annoying than useful. Not only does printf() require a fair
amount of code, it negatively affects the timing of your system.

GRAPHICAL DISPLAY

If your end product contains a graphical display, then you

can use it during debug to display large amounts of data and
even graphs. However, the debug code would eventually need
to be thrown away or hidden in the released version of your
code. A graphics library requires tens to hundreds of kilobytes
of code space and a lot of RAM (depends on the display
resolution), consumes CPU cycles, and adds complexity to
your application. There are better choices.

The above options are inadequate if you’re trying to display a
large amount of data or, worse yet, you forgot to include some
critical value that needs to be displayed for a process-control
application. You then have to edit/compile/download and run
a new build, and bring your application in the “state” you are
trying to observe. Also, displaying data is fine, but what do
you do if you also need to change the value of variables such
as setpoints, limits, gains, offsets, etc.?

GRAPHICAL LIVE WATCH

Advanced processor cores like the ARM Cortex-M or
Renesas RX are equipped with a hardware debugger port that
provides direct access to memory and peripherals without
requiring any CPU intervention. In other words, memory

2. A debugger enables the developer to stop the target and examine

variables and registers in a watch window.

3. Low-cost embedded systems are often equipped with LED or LCD

7-segment displays for development.

2 ELECTRONICDESIGN..COM

and I/O locations can be displayed, or changed, at run-time
without having to write a single line of target code.

The tool, called µC/Probe, uses the debugger port found
on Cortex-M or RX MCUs. It allows you to display or change
the value of variables or I/O port registers while the target is
running. You’re able to display values by assigning them to
graphical objects such as gauges, numeric indicators, LEDs,
thermometers, etc. You also can change the value of variables
by assigning those variables to sliders, switches, numeric
inputs, and more. In addition, µC/Probe can interface to the
target via RS-232C, TCP/IP, or USB, but this requires a small
target resident monitor. A Segger J-Link is by far the most
convenient and least intrusive option.

Figure 5 shows how µC/Probe works:
1. Write code using any editor, compile it, and link it.
2. Connect the debugger to the target debug port through,

in this case, a Segger J-Link.
3. Download code to the target MCU either into flash or

RAM. Then, instruct the debugger to run the code to start
testing.

4. µC/Probe reads the executable and linkable format
file generated by the compiler and extracts the name of the
variables, their data types, and physical memory locations
(i.e., their address). Then it creates a symbol table that’s used
to assign variables to a graphical objects library built into µC/
Probe.

5. Drag and drop graphical objects (gauges, LEDs, sliders,
etc.) and assign them to variables from the symbol table. µC/
Probe also knows about the names and addresses of I/O ports
through chip definition files (CDFs) that are built into it. This
allows the user to look at raw analog-to-digital converter
(ADC) counts, update digital-to-analog converters (DACs),
look up or change the value of GPIO ports, and so on.

6. Once variables or I/O ports are assigned to graphical
objects, press the µC/Probe “RUN” button and the tool will
start requesting (as fast as the interface allows it) the current
value of those variables and I/O ports through the J-Link
interface. J-Link converts
those requests into either
the memory reads or writes
that occur concurrently
while the CPU is executing
the target application.

To monitor the value
of additional variables,
simply stop µC/Probe,
add the graphical objects,
assign them to the desired
variables, press RUN, and
the tool displays—or allows
you to change—those
variables. There’s no need to

stop the target, nor edit application code, compile, download,
and restart.

THE µC/PROBE IN ACTION

Let’s explore an example use of µC/Probe. How can one
observe the intermediate values of a proportional-integral-
derivative (PID) loop where the update rate of the loop occurs
at 1 kHz? As shown in Figure 6, µC/Probe has a built-in
8-channel digital storage oscilloscope.

Once more, there’s no need to stop the target. If the variable
is available in the symbol browser, it can easily be assigned
to one of the channels. It’s able to trigger on the positive or
negative slope of any channel, delay trigger, do pre- or post-
triggering, zoom in and out, and more. Without µC/Probe,
a developer would have to scale and output the variables to
available DAC ports (assuming there are some) to observe
those signals. This would be highly intrusive, and you might
have to rebuild your application each time you want to look at
different traces.

The embedded target can run bare-metal code or work in
conjunction with a real-time operating system (RTOS) kernel.
µC/Probe has built-in kernel awareness for popular RTOSs, and

4. Developers can use low-cost LED- or LCD-based character mod-

ules as a debugging tool.

Windows PC

Toolchain
(editor/compiler/assembler/

linker/debugger)

ELF file

µC/Probe

Debug
port

Memory
or I/O

Cortex-M
or RX CPU

Debugger
interface

(Segger J-Link)

5. Using the µC/Probe tool, developers can debug embedded designs through a Graphical Live Watch window.

3 ELECTRONICDESIGN..COM

http://www.segger.com

of course, as is the case with other variables, that information
is displayed live (Fig. 7). The status of each task is displayed
in a row and contains its name, task priority, CPU usage, run
counter, maximum interrupt disable time, maximum scheduler
lock time and—by far the most valuable piece of information
from this view—the stack usage for each task.

Specifically, when designing RTOS-based embedded systems,
one of the most difficult aspects is establishing the stack space
needed for each task (see the blog “Detecting Stack Overflows”
for more detail). µC/Probe displays the maximum stack usage for
each task using a bar graph, which provides a very quick visual
indication of how close or far the stack is from overflowing.
The built-in kernel awareness feature of µC/Probe also allows
developers to monitor the state of other kernel objects, such as
semaphores, mutexes, queues, timers, etc.

SUMMARY

Testing and debugging real-time embedded software can
be challenging. In fact, it’s surprising that more tools aren’t
available to simplify embedded product design. Any tool
that offers instant visibility into the inner workings of your
application is worth looking into.

The forethought of chip designers to provide versatile
debug interfaces as those found on modern processors such
as the ARM Cortex-M and Renesas RX processors makes it
easier for tools to peek inside running embedded systems
without interfering with the CPU. Data-visualization tools
like µC/Probe let developers see inside an embedded system
to effortlessly confirm the proper operation of the design, or
reveal anomalies you can identify and fix, leading many to ask,
“Why didn’t I think of that?”

BIBLIOGRAPHY

Embedded Systems Building Blocks, Complete and Ready-to-Use
Modules in C
Jean J. Labrosse
ISBN 0-87930-604-1
CMP Books, 2000
Detecting Stack Overflows (Part 1 of 2)
Jean J. Labrosse
https://www.micrium.com/detecting-stack-overflows-part-1-of-2/
March 8, 2016
Detecting Stack Overflows (Part 2 of 2)
Jean J. Labrosse
https://www.micrium.com/detecting-stack-overflows-part-2-of-2/
March 14, 2016

6. The µC/Probe features a built-in 8-channel digital storage oscil-

loscope.

7. The µC/Probe has built-in awareness of popular real-time operating system kernels.

4 ELECTRONICDESIGN..COM

