
WILLIAM WONG | Technology Editor

H
aving already provided developers with virtual
machines (VM) and containers, enterprise com-
puting has now rolled out serverless program-
ming (Fig. 1). This migration takes advantage of

the growth in cores and processors within the cloud and enter-
prise systems. The number of cores involved is staggering
compared to a typical embedded system that employs a virtual
memory operating system like Linux. I mention this to parti-
tion out lower-end embedded systems that may lack even a
memory management unit.

Enterprise computing tends to be way ahead of embedded
development technology for a variety of reasons, including
the need to push the envelope in terms of size, performance,
management, and capacity. Embedded systems rarely push
the same limits, and designs tend to be more conservative
since they often need to run for years or decades. Still, many of
the technologies that have been refined at the enterprise level
are finding their way into embedded systems development

depending upon how applicable and how robust the solutions
are. VMs are one example where the technology has been
commonplace in the enterprise and is becoming more
common in embedded systems.

One reason for the enterprise focus application modularity
is the way services can be sold to developers and companies
as more computing gets moved to the public or private
cloud. This has led to a range of systems include System as
a Service (SaaS), Platform as a Service (PaaS), Infrastructure
as a Service (IaaS), Containers as a Service (CaaS) and now
FaaS (Function as a Service). FaaS is also known as serverless
computing. It isn’t really serverless, but from a user/developer
perspective there is no server to manage.

IaaS is implemented using VMs. The others can be
implemented within a VM but the underlying software is
hidden from application developers. VMs take advantage
of VM hardware that lets a VM to think it has a complete
machine to itself. It does mean that an operating system is

Enterprise computing has delivered virtual machines, containers and now serverless
programming. Find out where it fits for embedded developers.

VM, Containers, and
Serverless Programming
for Embedded Developers

VIRTUAL MACHINES

Application
Application
Application

Operating
system

Middleware

Device
drivers

Language
interpreter

Libraries

Hypervisor
Hypervisor device drivers

Hardware

Application
Application
Application

Operating
system

Middleware

Device
drivers

Language
interpreter

Libraries

CONTAINERS

Application

Middleware
Language
interpreter

Libraries

Operating system
Device drivers

Hardware

Container manager

Application

Middleware
Language
interpreter

Libraries

SERVERLESS

Application Application

Operating system
Device drivers

Hardware

Language interpreter
Middleware

Application manager
Libraries

VIRTUAL MACHINE

CONTAINER

1. Virtual machines, containers, and serverless programming run applications, but how they are supported differs.Virtual machines incorporate

everything including the operating system. Containers provide access to a common operating system while serverless systems provide a

standard application interface.

1 ELECTRONICDESIGN..COM

part of the package although it is possible to do a bare-metal
application that is essentially its own operating system with
built-in device drivers.

A hypervisor manages multiple VMs and typically the
hypervisor can support many different operating systems.
For example, Linux’s KVM and Microsoft’s Hyper-V can run
a range of operating systems from Solaris to BSD. Of course,
Linux, Microsoft Windows, and Microsoft Server are in the
mix as well.

1.	 Virtual Machines
VMs can be isolated by the hypervisor providing a hardware-

based security environment. Communication between the
VMs can be achieved by using a network or virtual network
interface, but some hypervisors allow shared peripherals and
shared memory.

The downside to VMs is their size and complexity. They
need to be large to include all the components that multiple
applications will need. The advantage is that multiple instances
of systems running on computers can be moved to a single
computer running multiple VMs. The multicore processors
make this practical and help provide a scalable environment,
since high-end CPU core performance has essentially
flattened.

It is possible to run VMs that use more cores and memory
than the underlying hardware provides. Cores are time shared
and swapped disk storage is used to provide more memory.
This overprovisioning is practical for some systems, but it can
significantly slow down systems that would regularly use more
cores and memory than are actually available.

A number of techniques are used to reduce overhead in
running and managing VMs. For example, file formats like
QCOW2 can be configured in a hierarchical fashion (Fig. 2),
where top-level files contain a VM but are referenced by other
files that are used for individual VMs. These files only contain
changes for a running an instance of the VM. Starting a new
VM is a matter of creating a new QCOW2 file based on an

existing file.
A typical creation process would be installing an operating

system on the root file as the VM boot disk. New VMs can be
based on this VM disk. In the next step, a new QCOW2 file
is set up for a new VM where a database server is installed.
The process is repeated to create a VM database that will be
used to store data. The upper level files will be read-only, and a
running VM will use that data if it has not been changed. This
is usually space-efficient since most data does not change. For
example, program code would not change unless software is
upgraded. Creating new VMs is fast because they are based
on existing files and the new files only contain a small amount
of metadata.

VM hypervisors sometimes perform similar optimizations
by tracking the memory blocks that are mirrored in a virtual
disk. In many cases it is possible to determine that a read-
only memory block from a virtual disk is the same for two or
more active VMs. In this case, a single memory block can be
shared among the VMs in a read-only fashion. The memory
management system can provide this protection. A hypervisor
can support changes to these blocks if it can remap the block
or if one of the VMs makes a change. The remaining VMs can
still share the original block, but the other VM will need to
have its own block. This support will be transparent to the
VMs.

2.	 Containers
Container systems, like Docker, require virtual memory

hardware but not virtual machine support to host multiple
applications. A Docker instance can run in a VM, but it can
also run alone. It runs on top of an operating system like Linux
and can run one or more containers.

Containers use services provided by the underlying
container manager that in turn gets its support from the host
operating system. Containers are isolated from each other
and the underlying system using security features like Linux
chroot, control groups (cgroups), and namespaces. These are

typically implemented using the operating system’s
virtual memory system and security support. The
security features tend to be more varied than a VM,
where systems tend to be isolated by default and
resources include memory and peripherals.

Containers do have an advantage because they
can often take advantage of the container system’s
security support, which is based on the operating
system’s security. For example, this allows a Linux-
based container system to employ security systems
like TOMOYO, AppArmor, SELinux, and GRSEC.
These have advanced policy-based features that are
typically not found in a VM environment.

Containers have other advantages over VMs
besides just a more customizable security

Data
Data
Data
Data

VIRTUAL MACHINE
logical disk Metadata

QCOW2
disk contents

Metadata
QCOW2
changes

Metadata
QCOW2
changes

Metadata
QCOW2
changes

Data
Data
Data
Data

VIRTUAL MACHINE
logical disk

Metadata
QCOW2
changes

2. The root and upper level QCOW2 files are read-only. The leaf files can be used

with a single virtual machine that can make changes that will be reflected in the

leaf file.

2 ELECTRONICDESIGN..COM

environment. There is more commonality among containers,
since they are all based on the same framework that is built
on a common operating system. Developers do not have to
manage or worry about the underlying operating system from
a container perspective. The containers include less code and
data and tend to be easier to configure because there is no
need to address operating system functionality.

On the downside, containers are specific to the operating
and container environment. It is possible to migrate between
platforms in the same way that it is possible to migrate VM
virtual disk files between different host VMs, but both of
these tend to be exceptions associated with moving existing
applications to a new host environment.

A server can typically support many more containers than
VMs using the same resources because containers inherently
have less overhead compared to applications running in a
VM. They also tend to be easier to configure and upgrade
since there are fewer items involved. For example, there is no
operating system to worry about upgrading.

Not all container systems are created equal. Some allow
containers to have a single application while others allow
multiple applications to reside within a container. The latter
would allow an SSH server to be included in a container for
remote access to the container. Likewise, a single container
could include a web server and a database server. The other
approach would require two containers, one for the database
server and one for the web server. There are advantages to
both approaches including differences in configuration,
upgradeability, support and so on.

Container management systems usually allow groups
of containers to be configured and deployed. This is very
necessary where containers are restricted to a single
application. Container applications are linked via network
connections so related applications can be on the same virtual
network or on another server. Container migration between
servers is normally available for load leveling and redundancy.

Containers tend to be run in a similar fashion as VMs. They
tend to run for a long period of time and are normally started
by a user when a system starts up, or in response to a limited
number of events.

3.	 Serverless Computing
Serverless computing services like Amazon’s AWS Lambda

or platforms like the open-source Apache OpenWhisk take
the idea of containers to their extreme. Serverless computing
is based on functions that are essentially small applications
often designed to run on demand for short periods of time.
Some systems even limit the time and resources a function
can utilize. Containers and VMs can also have limitations, but
they tend to be higher since they incorporate more services.

One reasons for serverless computing is to provide a system
that is easy to track for billing purposes. A serverless system

may simply track the amount of time a function runs while
limiting the resources it can use.

Another reason is to support event-driven workloads that
often arise with the Internet of things (IoT). A function can
be started on the reception of an IoT message. It is easy to
scale the response based on demand with the underlying
system handling this management instead of building it into
the application.

Serverless functions can be written in languages like
Javascript or Python, although it is possible to write them in
almost any language, including C and C++. The approach does
allow the functions to be written in a more generic fashion
that is not dependent upon the underlying implementation or
operating system.

Security in serverless environments is similar to containers
in that the operating system and management environment
provide mechanisms to allow the serverless functions to only
access their provided resources. The potential for problems
exists simply because of the number of functions normally
involved in a solution and the need to implement policies
properly.

Another issue with serverless solutions as well as containers
is vendor or platform lock-in, since the application is now
dependent on the underlying framework. This is less of an
issue for embedded solutions that maintain their own platform
but, in this IoT age, part of a solution may reside in the cloud
on a public service like AWS Lambda.

System solutions may incorporate a range of platforms from
VMs to containers to serverless functions. Some functionality
may be more applicable to one approach over another.

Some enterprise solutions will be overkill for many
embedded applications, but often solutions can be scaled to fit
embedded needs. There also tend to be a wide range of options
for all these approaches, and some may be more amenable to
embedded developers.

At this point, VM support tends to be readily available and
the same is true for container systems. It is possible to use the
serverless approach in embedded applications. It may be a
good fit for event-based applications, but developers will have
to keep its advantages and limitations in mind when creating
functions, since it tends to be a bit different than writing
applications for VMs or containers.

3 ELECTRONICDESIGN..COM

