
william wong | Technology Editor

M
any of you knzow that I advocate embedded
programmers to try out new languages and
techniques outside of their normal realm,
which tends to be C and C++ programming

(see “C Programmers, Time To Try Ada” on electronicdesign.
com). In fact, C is still the favored language for embedded
applications mostly because it supports every chip on
the market. Unfortunately, C is a very good tool for
shooting yourself in the foot.

The rise of the Internet of Things (IoT) has
elevated the safety and security discussion
that had been relegated to specific arenas like
military, avionics, medical, and transportation.
Even in these areas there were only some that
required higher levels of safety and security, or so
we thought. These days it is not uncommon for safety
and security to be at the top of the list for concerns or features
in a project. Some results from our Electronic Design 2017
Embedded Revolution survey highlight this concern.

This brings us back to the ways of addressing safety and
security issues and how to address them. Coding standards,
static analysis tools, and good design methodologies are
just a few things that can help in this area, but having a
programming language that helps rather than hinders is
another item that can have a major impact on the resulting
programs. Ada/SPARK (see “Ada 2012: The Joy of Contracts”
on electronicdesign.com) and Java (see “Java For Critical Jobs”
on electronicdesign.com) are two examples where safety and
security were part of the design criteria for the languages.

The up-and-coming language to address this space is Rust.
Rust has a number of features that lend itself to more bug-free
code, including guaranteed memory safety using an inherent
reference counting systems and threads without data races,
just to name two major features.

I started learning Rust recently, and still have a long way
to go in understanding the advantages and disadvantages, but

I thought it would be useful to give some feedback to those
looking for alternatives to C and C++.

First, Rust is a significant deviation from C and even
C++, although it supports most of their semantics. Second,
Rust looks somewhat like C and C++ because of its use of
curly brackets and general flow control syntax, although

this is true only in a cursory sense. In actuality, Rust
is quite different from C and C++ in both syntax

and semantics. Finally, Rust is new, evolving,
and community supported. The community is
robust and the compiler version is currently
1.16.0.

Now for a few details on Rust: It is built on
LLVM, so its code generation and optimization

is built on a tried-and-tested platform. Rust has an
ownership and borrowing system for memory that I

will talk about later, but it does not have a built-in garbage
collector like Java. The Rust compiler is designed to generate
high-performance application code like C and C++ and to be
a fast compiler.

1.	 Hello Rust
There are other resources that will give you a good

introduction to Rust, but here is my take on it, starting with a
variation of Hello World.

fn main () {
	 let hello = “Hello World”;
	 println!(“{}.”, hello);
}
This looks a little like C, but fn and let give it away. The

first indicates a function followed by the function name. The
main function is the same as in C, the first thing called after
initialization. The let statement is an assignment, but the data
type in this example is inferred instead of explicitly defined, as
with C or C++. In this case it is a string constant.

What’s different with Rust is that our hello variable is
immutable. It is assigned a value initially, but it will never

Technology Editor Bill Wong takes a crack at Rust, a relatively new programming
language designed for safe and secure application development.

Reflections on Rust

1 electronicdesign..com

be changed. While it’s possible to have mutable
variables like C and C++ normally have, the variable
name is prefixed by mut, for mutable. I am not keen
on the abbreviations that Rust uses but, like any
good cryptic language, it is done to save on
typing.

The exclamation point after println
indicates that the former is a macro,
and this is a macro invocation.
Macros are significantly more
powerful than C macros that
provide basic substitution.
We won’t get into the details
of this particular macro, but
the two arguments we are
using include a formatting
string, “{}.”, and a value
from the variable hello. The
value, Hello World, replaces
the curly brackets, and the
following would be printed
on the console.

Hello World.
This is a comparable C

program.
void main () {
	 char * hello = “Hello World”;
	 printf(“%s.\n”, hello);
}
The big difference is that C uses pointers

and zero terminated strings that cause all sorts of
problems. Rust can interface with C and supports these
constructs, but the defaults in Rust are the opposite, where
exceptions must be explicitly noted as in Ada/SPARK. The
idea is to prevent the programmer from doing things they
should not but allowing that to occur it if the areas are clearly
annotated.

2.	 Thanks for the Memory
As noted, Rust does pointers, but there is a lot more to

the story. Essentially, Rust tracks the lifetime of pointers
and references like SPARK can, so compile time checks can
be applied to make sure the programmer is doing what they
intend. Using references to objects that could have disappeared
is not a good thing, and this can be check in most contexts.

Rust has a number of concepts, including object and
related pointer lifetimes, as well as the idea of borrowers and
ownership. In general, there is an owner of an object and
references can be borrowed. An object cannot be released
if there are borrowed references to it. All references have
a lifetime, but they can often be inferred based on Rust
language rules. There are also explicit lifetime parameters that
can be used in various areas in the code, such as in function

signatures.
As an aside, I will mention that Rust’s use of semicolons may

not be what you think. They are not statement terminators,
as with C or Ada. In Rust, everything is an expression; a
semicolon indicates that the value of the expression will be
ignored and the result will be nil. The following shows both
the lack of a semicolon and an indication of the lifetime of the
function’s result:

fn hello_world () -> & ‘static str {
	 “Hello World”
}
A call to hello_world could be used as the assigned value

of hello in our prior Rust example. The ampersand, &, is a
reference as with C++ and the ‘static modifier indicates the
lifetime of the result. An error would be flagged if the result
did not meet these criteria. Likewise, the compiler knows

Customer privacy violations

Theft of intellectual property

Injury or death

Theft of data

Product tampering

Theft of service

Denial of service

Product cloning

Blackmail or ransom

57%

55%

55%

52%

51%

48%

46%

45%

40%

31%
35%

21%
34%

39%

35%

43%

39%

32%

Somewhat Critical Very Critical

Customer privacy violations

Theft of intellectual property

Injury or death

Theft of data

Product tampering

Theft of service

Denial of service

Product cloning

Blackmail or ransom

57%

55%

55%

52%

51%

48%

46%

45%

40%

31%
35%

21%
34%

39%

35%

43%

39%

32%

Somewhat Critical Very Critical

Security for just IoT applications has caused concern in a number of

areas (from Electronic Design 2017 Embedded Revolution survey).

2 electronicdesign..com

what it is dealing with in terms of an object’s lifetime where
the function will be called.

Rust and Ada/SPARK have a lot to offer embedded
developers, and could easily replace C and C++ in most
applications. So far, learning Rust for me has been on par with
taking up C++ and Ada/SPARK. It ain’t easy, but the payoff
is significant. Likewise, the availability of training can be a
significant boost in getting started.

I have a number of languages under my belt, which has
proved to be a benefit: The concepts are familiar, although the
syntax and some of the semantics are different. The challenge
for any programmer will be in understanding both the features
and how to apply them on a regular basis.

The need for safe and secure programming languages
should not be overlooked. Failures in the field—whether
accidental or due to attacks—may jeopardize lives, property,
and the companies that create the products. In the past,
many have tried to get away limiting liability with an end-
user license agreements (EULAs) that delivers software as-is.
Having software that does not turn into a liability may be a
better approach.

3 electronicdesign..com

