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T
he Internet of Things (IoT) is growing rapidly, and 
wireless sensor networks (WSNs) are critical to 
extending the reach of the Internet infrastructure 
to “everything.” In fact, WSNs are already in use in 

critical monitoring and control applications around the world. 
Any loss of security in these systems may have real and direct 
consequences on efficiency and safety. Fortunately, the litera-
ture on securing wireless systems is readily available, and best 
practices are well known. 

Despite this knowledge, the news is filled with reports doc-
umenting successful attacks on wireless in general and WSNs 
in particular. Surprisingly, many products on the market 
do not embrace even the most basic aspects of system secu-
rity, and many other products with well-intended security 
fall short of the mark. Wireless security is not trivial, but with 
rigorous attention to detail, it is possible to build systems that 
are not vulnerable to wireless attack.

GOALS & CONSEQUENCES

Today’s security issues are not limited to wireless systems. 
Indeed, Internet attacks big and small are so common today 
that they are barely newsworthy. There is a perception that 
wireless systems are more vulnerable to 
attack, because anyone with the appro-
priate radio can communicate with a 
wireless device from some distance. Of 
course, on the Internet, anyone with a 
computer can launch an attack from dis-
tances far longer than any radio signal 
will propagate. The bottom line is that all 
cyber-physical systems, whether wired 
or wireless, need to take careful precau-
tions against attack. The primary goals of 
security in WSNs are based on providing 
three elements:

• �Confidentiality: Data being transported in the network can-
not be read by anyone but the intended recipient.

• �Integrity: Any message received is known to be exactly the 
message that was sent, without additions, deletions, or modi-
fications of the content.

• �Authenticity: A message that claims to be from a given 
source is, in fact, from that source. If time is used as part of 
the authentication scheme, authenticity also protects a mes-
sage from being recorded and replayed later.

Confidentiality is required for not only security-related 
applications but also for common everyday applications. For 
example, sensor information regarding production levels or 
equipment status may have some competitive sensitivity. Sen-
sor data should be encrypted so only the intended recipient 
can use it.

Both sensing and command information must arrive intact. 
If a sensor indicates “the tank level is 72 cm” or the controller 
states “turn the valve to 90 degrees,” losing one of the digits in 
either one of those numbers could be catastrophic.

Having confidence in the source of a message is critical. Either 
of the two messages above could have very bad consequences if 
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it were sent by a malicious attacker. An 
extreme example is a message like “here’s a 
new program for you to run.”

The consequences of poor security 
are not always easy to anticipate. For 
example, a wireless temperature sensor 
or thermostat might seem like a prod-
uct with little need for security. But con-
sider the consequences to product sales 
due to a newspaper headline describ-
ing how criminals used a radio to detect 
the “vacation” setting on the thermo-
stat and robbed those houses while the 
owners were gone. The safest course is to 
encrypt all data. 

In the early days of ZigBee, most 
networks were run with no security. 
As a result, in a multi-vendor interop-
erability demonstration in front of 
many potential customers, a number 
of ZigBee networks failed dramatically 
because they interpreted a command 
from a different network to be a coor-
dinator realignment message that told 
them to change channels. There was no way for the ZigBee 
networks to determine that the messages were coming from 
a device that was not in their network. This disastrous behav-
ior was not the result of an actual attack, but rather a lack of 
authentication, which led to interpretation of packets from a 
completely different network.

In industrial process automation, the consequences of an 
attack may be much more dire than the loss of a customer. If 
faulty process control information is delivered to the control 
system, an attacker could cause physical damage. For example, 
a sensor feeding data to a motor or valve controller indicating 
that the motor speed or tank level is too low could result in a 
catastrophic failure, similar to what happened to the centri-
fuges in the Stuxnet attack.1

On a purely practical level, even a failed attack or an aca-
demic revelation of a potential weakness is likely to lead to 
a loss of sales, urgent engineering effort, and a major public 
relations challenge. Fortunately, there are very powerful tools 
for building secure, robust wireless communications net-
works. It takes diligence and attention to detail, but there is 
nothing fundamentally hard about it.

SECURITY TOOLS

The most basic cryptographic tool is the block cipher. As 
an example, AES-128 is a particular block cipher that takes 
a 16-byte message (the plaintext) together with a 128-bit key 
and generates a 16-byte encrypted version of the message (the 

ciphertext). Anyone with the same key can decrypt the cipher-
text to get back the plain text. Anyone without the key cannot 
get back the plain text. 

The AES cipher is easy to implement in software and com-
monly available in hardware on many radio and microproces-
sor chips. As far as anyone knows, AES-128 is unbreakable. 
Given the ciphertext, there is absolutely no way to figure out 
the plain text without the key. Indeed, the U.S. National Secu-
rity Agency chose this cipher for the encryption of secret doc-
uments. In all of the reported attacks on WSN security, no one 
has ever claimed that the AES cipher provided the weak link.

The only known attack on AES-128 is a so-called “brute 
force” attack, meaning that the attacker tries every possible 
key to see which one gives a reasonable message. Trying every 
possible 128-bit key is a big task. If you had a billion comput-
ers, and each computer could check a billion keys every sec-
ond, and you ran all of those computers for a billion years, you 
would only try about 0.1% of all of the possible 128-bit keys. 
There are more than 300 billion billion billion billion different 
128-bit keys.

A block cipher lets the source encrypt a message so only 
the destination (with the same key) can decrypt it (Fig. 1). If 
the messages are something simple like “turn the light on” or 
“turn the light off,” then even if the messages are encrypted to 
seemingly meaningless strings of bits, anyone intercepting a 
few messages will quickly figure out that there are only two 
different messages. 
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A solution to this problem is to 
have a message counter and then 
number each message sent. Due to 
the nature of the cipher, any change 
in the message plain text will result 
in a different ciphertext. Two mes-
sages sent at different times, such 
as “Msg 1: turn the light on” and 
“Msg 53: turn the light on,” will look 
completely different to anyone who 
doesn’t have the key. As long as the 
message counter never repeats, the 
ciphertext will also never repeat. 
This concept of a message counter 
that never repeats is called a nonce, 
for “number used once.”

The message integr ity  check 
(MIC), also sometimes called a mes-
sage authentication code (MAC), is a 
cryptographic checksum of the mes-
sage. By sequentially running all parts 
of a message through a block cipher 
with a particular key, the sender of 
the message creates a short encrypted 
summary of the entire message, called 
the message integrity check. 

This MIC is then appended to the 
message and sent along with it. The 
receiver, using the same key, can per-
form the same function on the mes-
sage, calculate its own MIC, and ver-
ify that the result matches the MIC 
that was received. Any changes to the message, even a single 
bit, will cause the MIC to change and therefore cause the mes-
sage to be rejected by the recipient.

Also, a person can generate the encryption keys in a WSN, 
but this is typically impractical and ultimately insecure, as we 
will see below. Ideally, we’d ask computers to generate the keys 
for us. We don’t want anyone to be able to guess the keys, so 
we’d like them to be random, and that requires a random num-
ber generator (RNG). 

Usually people are happiest with computers when they are 
completely deterministic, and random behavior is frowned 
upon. Making a computer truly random is not a trivial task, and 
it always involves interaction with something that’s non-digital. 

Fortunately, radios are intrinsically non-digital, and it has 
taken a century of progress from the days of Marconi to get 
them to the point where they deliver digital messages reliably. 
Any well-designed WSN system will use the radio or some 
other source of thermal noise as an integral part of its RNG 
and will generate truly random numbers.

Finally, even a legitimately obtained yet incorrectly 
deployed device could confuse a control system not expecting 
an additional input. Access control lists (whitelists, blacklists) 
provide an additional layer of control to ensure that unwanted 
devices can’t disrupt a network. 

LACK OF UNDERSTANDING 

The single most common mistake in WSN security is not 
appreciating the magnitude of the problem until it is too late. 
Building and deploying a wireless lighting control system 
without security may not sound like a problem until the local 
college students start making light shows out of your cus-
tomers’ office spaces. Even those who realize that security is 
important may not appreciate the widespread sophistication, 
software and hardware tools, and skills that are available and 
regularly applied on the dark side of this conflict. 

Several WSN companies boast that their channel-hopping 
protocols have some security benefit, as if an attacker will not 
be able to buy a multichannel receiver and transmitter. Others 
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seem to think that millions or billions of keys is 
enough to prevent a successful attack, when in 
fact even billions of billions is not enough.2 
If there is the possibility of a brute force 
attack revealing a key, then a key-rotation 
schedule that is a small fraction of the 
brute force time will deter the aver-
age attacker, but might not stop a very 
lucky one.

SHARED KEYS AND SOFTWARE  

REVERSE ENGINEERING

Assuming that a proper cipher has been chosen, and nonces 
are used, the simplest system will use a single shared key for all 
cryptographic operations. This approach is fine as long as the 
key remains secret, but that is a difficult goal to achieve.

An extreme example is the reported vulnerability of a  
Bluetooth-controlled toilet/bidet combo, in which the default 
pairing key of all zeros was used.3 This is really more an exam-
ple of “no security” than poor security, but illustrates the point 
that the best protocols are no defense against poorly chosen 
keys, or even a random key that becomes widely known on 
the Internet. Bluetooth has excellent security tools. But if you 
don’t use them properly, they are worthless once someone 
publishes your ill-advised product-wide key on the Web.

The next level is to have a single unique key for each network 
that is delivered or installed, or a new key each time a network 
is formed. If you have a good RNG, and you control all of the 
hardware in your network, then this approach is fine. But if any 
one node in the network is compromised, then the entire net-
work is open to attack. If users are allowed to write their own 
software on the nodes in the network, then it is quite difficult to 
prevent a malicious user from finding the network key.

Even if the node software is closed, it is quite difficult to pre-
vent attackers from reading out the code in a microprocessor 
if they have possession of the hardware. The security literature 
is filled with examples of such attacks, which often go like this: 
obtain a legal version of the hardware and break into it to get 
the code; reverse engineer the code to figure out where the key 
is stored (this can be as simple as compar-
ing the code from two different networks 
to see which bits are different); and use 
this information to either figure out how 
the key was calculated (see “Poor Quality 
RNG” below) or to make it much quicker 
to get the key out of hardware captured 
from the actual network under attack.

DVD security has fallen victim to 
such attacks, both with the original DVD 
Content Scrambling System (CSS) and 
the HD-DVD/Blu-ray Advanced Access 

Content System (AACS). Hackers examining player code and 
exposing and publishing several of the processing keys pro-
tecting that material compromised both.4 

With very rare exceptions, you must assume that a deter-
mined attacker will be able to obtain your hardware, read 
out your code, and reverse-engineer your algorithms and 
software. As a result, a well-designed security system must not 
depend on the algorithms and software remaining secret, and 
it must not rely on the key or keys in any one device remaining 
secret. An attacker that has one of the network nodes must be 
assumed to be able to gain complete control of that node. In a 
well-designed system, the compromise of a single node must 
not affect security in the rest of the network.

The simplest solution to this reverse-engineering problem 
is to ensure that every communication session (or flow of 
data between two endpoints) has its own unique keys that are 
unknown to any other nodes in the network. In this case, even 
a compromised node in the network cannot snoop, manipu-
late, or impersonate the data or commands from any other 
node in the network.

KEY DISTRIBUTION

Assuming that appropriate protocols and ciphers are used, a 
network with unique random keys for each end-to-end session 
protects the confidentiality, integrity, and authenticity of net-
work communication (Fig. 2). However, arriving at this situation 
presents vulnerabilities in some systems. 

It is usually inconvenient to pre-program every node in 
the network with all of the unique keys 
that it will need for all future sessions, so 
keys need to be distributed after network 
formation. In some systems, this has been 
done by sending the initial session keys 
“in the clear” (not encrypted), under the 
assumption that the network is then only 
vulnerable to an attack for a brief period 
during network formation. Unfortunate-
ly, an attacker may well be able to set up 
snooping equipment and wait patiently 
for a network reset, or in fact cause a net-
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work reset by power cycling the network 
controller or gateway, or through some 
other method.

A simple solution is to install a single 
unique key on each node in the network 
at manufacturing time and have a single 
trusted security manager in the net-
work, which is given those keys, allow-
ing a secure session between each node 
and the security manager. The security 
manager then generates the required 
keys for all other sessions and sends 
them via its secure channels to each of 
the devices involved. Alternatively, there 
is another suite of tools using public 
key infrastructure that provides similar 
functionality as well as other benefits.5

POOR QUALITY RNG

Among those who take security seri-
ously, perhaps the most common mis-
take is the use of an RNG with poor 
randomness. Even with all of the prop-
er protocols and ciphers, the network 
is only as challenging to attack as the 
keys are difficult to guess. The use of 
non-cryptographic random number 
generators or cryptographic random 
number generators with seeds (initial 
values) that are non-random is a com-
mon mistake.

Random numbers are useful in many 
different applications in computer sci-
ence, so many operating systems have 
a “rand()” function built in. For exam-
ple, the original UNIX rand() function 
maintained an internal 32-bit state and 
computed the next random number and 
next state based on the current state. A 
user could seed this RNG with a 32-bit 
number, and then each call to rand() 
would generate the next value in a 
sequence of 4 billion values. It wasn’t a 
great RNG, but it was good enough for 
most non-cryptographic applications. 

Today, however, it would be a simple 
homework assignment to generate a 
table in a single desktop computer that 
contained all 4 billion possible ran-
dom numbers and their location in the 
sequence. No amount of randomizing 

the seed will help. The RNG itself is not 
sufficiently sophisticated.

Cryptographic RNGs use much more 
internal state—typically at least 128 bits. 
With 128 bits, as discussed above, even 
billions of computers operating for bil-
lions of years are extremely unlikely to 
find a pattern in the sequence of num-
bers. The implementation and test pro-
cedures of good cryptographic RNGs 
are well documented.6

Even the best RNG algorithm is only 
as random as the seed it was provided. 
IOActive pointed out a common mis-
take in two WSN security systems by 
reverse engineering the software bina-
ries of both products to discover that 
they were using a very non-random 
seed.7 Both products used the time 
function (in seconds) as the seed of their 
random number generator. Since there 
are only a few tens of millions of seconds 
per year, even a modest laptop computer 
can generate all possible keys by a quick 
search of the last few decades.

SECURE NETWORKS

While the news is full of examples 
of failed wireless security, the world is 
filled with wireless networks that are, in 
fact, secure. Secure networks just aren’t 
newsworthy. As discussed, a secure net-
work requires both a secure protocol 
and a secure implementation (Fig. 3).

Some examples of well-designed 
security protocols in WSNs include the 
Wireless HART and ISA100.11a indus-
trial automation protocols, as well as 
the ZigBee Smart Energy protocols. 
All of these protocols have undergone 
extensive review by security experts, 
and many implementations have sailed 
through similar review.

In particular, the Wireless HART 
protocol is the basis of secure networks 
deployed in critical infrastructure appli-
cations all over the world, from the Arctic 
Circle to the Arabian Desert. End users 
of this technology trust WSNs to supply 
process control information reliably and 
confidentially between authenticated end 
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points. Customers in such industries, as well as the vendors who 
supply them, have confidence in their networks because of deep 
analysis and testing of the protocols and implementations that 
underlie them.

In WSNs for industrial process automation, it was under-
stood from the beginning that security was critical, and the 
protocols and implementations reflect that reality. As new 
protocols emerge, especially for the Internet of Things, some 
hard lessons will need to be relearned in application environ-
ments where it may not be as obvious that security is critical. 
As the preceding examples have shown, there are some who 
have not yet learned these lessons. Fortunately, it is just as easy 
to provide “industrial quality” security in Internet Protocol 
(IP) applications as in industrial applications. 

End users have deployed SmartMesh IP embedded wireless 
mesh sensor networks from Linear Technology’s Dust Networks 
line in some of the toughest RF environments, including indus-
trial process plants, data centers, smart parking applications, 
railcars, and mining. Built on Linear’s ultra-low-power LTC5800 
802.15.4 system-on-chip, SmartMesh networks are embedded 
systems complete with hardware and networking software that 
deliver secure mesh sensor networks with >99.999% data reli-
ability and ultra-low power (Fig. 4). SmartMesh networks have 
several layers of security to address confidentiality (through 
encryption), integrity (of a message), and authenticity (verifying 
that a message is from the stated sender).

CONCLUSION

The consequences of poor security in wireless sensor net-
works are severe. It is unfortunate that there has not been a 
serious attempt to secure many products on the market today, 
or that those that have done so have failed in that effort. Fortu-
nately, by using well-established principles, appropriate proto-
cols and ciphers, and the randomness inherent in the physics 
of thermal noise, it is possible to build systems that are both 
secure and efficient. Many such protocols and implementa-
tions exist, and there are secure wireless networks all over the 
world. Everyone in the wireless sensor networking space will 
benefit when all of the rest of the networks are secure too. 
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