
38 JUNE 2014 ELECTRONIC DESIGN

T
he Internet of Things (IoT) is growing rapidly, and
wireless sensor networks (WSNs) are critical to
extending the reach of the Internet infrastructure
to “everything.” In fact, WSNs are already in use in

critical monitoring and control applications around the world.
Any loss of security in these systems may have real and direct
consequences on efficiency and safety. Fortunately, the litera-
ture on securing wireless systems is readily available, and best
practices are well known.

Despite this knowledge, the news is filled with reports doc-
umenting successful attacks on wireless in general and WSNs
in particular. Surprisingly, many products on the market
do not embrace even the most basic aspects of system secu-
rity, and many other products with well-intended security
fall short of the mark. Wireless security is not trivial, but with
rigorous attention to detail, it is possible to build systems that
are not vulnerable to wireless attack.

GOALS & CONSEQUENCES

Today’s security issues are not limited to wireless systems.
Indeed, Internet attacks big and small are so common today
that they are barely newsworthy. There is a perception that
wireless systems are more vulnerable to
attack, because anyone with the appro-
priate radio can communicate with a
wireless device from some distance. Of
course, on the Internet, anyone with a
computer can launch an attack from dis-
tances far longer than any radio signal
will propagate. The bottom line is that all
cyber-physical systems, whether wired
or wireless, need to take careful precau-
tions against attack. The primary goals of
security in WSNs are based on providing
three elements:

• �Confidentiality: Data being transported in the network can-
not be read by anyone but the intended recipient.

• �Integrity: Any message received is known to be exactly the
message that was sent, without additions, deletions, or modi-
fications of the content.

• �Authenticity: A message that claims to be from a given
source is, in fact, from that source. If time is used as part of
the authentication scheme, authenticity also protects a mes-
sage from being recorded and replayed later.

Confidentiality is required for not only security-related
applications but also for common everyday applications. For
example, sensor information regarding production levels or
equipment status may have some competitive sensitivity. Sen-
sor data should be encrypted so only the intended recipient
can use it.

Both sensing and command information must arrive intact.
If a sensor indicates “the tank level is 72 cm” or the controller
states “turn the valve to 90 degrees,” losing one of the digits in
either one of those numbers could be catastrophic.

Having confidence in the source of a message is critical. Either
of the two messages above could have very bad consequences if

Secure Wireless Sensor
Networks Against Attacks
Well-established principles, appropriate protocols and ciphers, and the randomness
inherent in the physics of thermal noise add up to fortify systems to ensure they are
both secure and efficient.

IndustryTrends
KRIS PISTER and JONATHAN SIMON | Dust Network Products, Linear Technology Corp.
kpister@linear.com and jsimon@linear.com

1. A source node uses a block cipher, a nonce, and a secret key to encrypt a plain text mes-

sage, turning it into ciphertext. Only someone in possession of the key can decrypt the

message. The nonce may be sent in the clear, or it may be implicit from the structure of the

protocol, such as a timestamp.

Plaintext Encrypt

Nonce

Shared key

Ciphertext Decrypt Plaintext

GO TO ELECTRONICDESIGN.COM 39

it were sent by a malicious attacker. An
extreme example is a message like “here’s a
new program for you to run.”

The consequences of poor security
are not always easy to anticipate. For
example, a wireless temperature sensor
or thermostat might seem like a prod-
uct with little need for security. But con-
sider the consequences to product sales
due to a newspaper headline describ-
ing how criminals used a radio to detect
the “vacation” setting on the thermo-
stat and robbed those houses while the
owners were gone. The safest course is to
encrypt all data.

In the early days of ZigBee, most
networks were run with no security.
As a result, in a multi-vendor interop-
erability demonstration in front of
many potential customers, a number
of ZigBee networks failed dramatically
because they interpreted a command
from a different network to be a coor-
dinator realignment message that told
them to change channels. There was no way for the ZigBee
networks to determine that the messages were coming from
a device that was not in their network. This disastrous behav-
ior was not the result of an actual attack, but rather a lack of
authentication, which led to interpretation of packets from a
completely different network.

In industrial process automation, the consequences of an
attack may be much more dire than the loss of a customer. If
faulty process control information is delivered to the control
system, an attacker could cause physical damage. For example,
a sensor feeding data to a motor or valve controller indicating
that the motor speed or tank level is too low could result in a
catastrophic failure, similar to what happened to the centri-
fuges in the Stuxnet attack.1

On a purely practical level, even a failed attack or an aca-
demic revelation of a potential weakness is likely to lead to
a loss of sales, urgent engineering effort, and a major public
relations challenge. Fortunately, there are very powerful tools
for building secure, robust wireless communications net-
works. It takes diligence and attention to detail, but there is
nothing fundamentally hard about it.

SECURITY TOOLS

The most basic cryptographic tool is the block cipher. As
an example, AES-128 is a particular block cipher that takes
a 16-byte message (the plaintext) together with a 128-bit key
and generates a 16-byte encrypted version of the message (the

ciphertext). Anyone with the same key can decrypt the cipher-
text to get back the plain text. Anyone without the key cannot
get back the plain text.

The AES cipher is easy to implement in software and com-
monly available in hardware on many radio and microproces-
sor chips. As far as anyone knows, AES-128 is unbreakable.
Given the ciphertext, there is absolutely no way to figure out
the plain text without the key. Indeed, the U.S. National Secu-
rity Agency chose this cipher for the encryption of secret doc-
uments. In all of the reported attacks on WSN security, no one
has ever claimed that the AES cipher provided the weak link.

The only known attack on AES-128 is a so-called “brute
force” attack, meaning that the attacker tries every possible
key to see which one gives a reasonable message. Trying every
possible 128-bit key is a big task. If you had a billion comput-
ers, and each computer could check a billion keys every sec-
ond, and you ran all of those computers for a billion years, you
would only try about 0.1% of all of the possible 128-bit keys.
There are more than 300 billion billion billion billion different
128-bit keys.

A block cipher lets the source encrypt a message so only
the destination (with the same key) can decrypt it (Fig. 1). If
the messages are something simple like “turn the light on” or
“turn the light off,” then even if the messages are encrypted to
seemingly meaningless strings of bits, anyone intercepting a
few messages will quickly figure out that there are only two
different messages.

Sender Data

Data

Shared key
+ nonce

Encrypt and
authenticate
(end-to-end

 MIC1)

Ciphertext

Link key
+ time (nonce)

Packet

Address
+ encrypted data
+ MIC1 + MIC2

Authenticate
(link layer

MIC2)

Decrypt and
validate MIC1

Shared key
+ nonce

Ciphertext

Yes
For this
node?

No

Re-authenticate
(new MIC2)

Link key
+ new nonce

Address + encrypted data + MIC1 + new MIC2

Forward to next node

Validate MIC2

Link key
+ time (nonce)

Receiver

2. Most secure WSN systems use two levels of keys: end-to-end session keys and one or more link

keys. Each pair of motes with an end-to-end communication channel will have a unique shared

key for encryption and authentication. In addition, a link key is used for hop-by-hop authentication.

40 JUNE 2014 ELECTRONIC DESIGN

A solution to this problem is to
have a message counter and then
number each message sent. Due to
the nature of the cipher, any change
in the message plain text will result
in a different ciphertext. Two mes-
sages sent at different times, such
as “Msg 1: turn the light on” and
“Msg 53: turn the light on,” will look
completely different to anyone who
doesn’t have the key. As long as the
message counter never repeats, the
ciphertext will also never repeat.
This concept of a message counter
that never repeats is called a nonce,
for “number used once.”

The message integr ity check
(MIC), also sometimes called a mes-
sage authentication code (MAC), is a
cryptographic checksum of the mes-
sage. By sequentially running all parts
of a message through a block cipher
with a particular key, the sender of
the message creates a short encrypted
summary of the entire message, called
the message integrity check.

This MIC is then appended to the
message and sent along with it. The
receiver, using the same key, can per-
form the same function on the mes-
sage, calculate its own MIC, and ver-
ify that the result matches the MIC
that was received. Any changes to the message, even a single
bit, will cause the MIC to change and therefore cause the mes-
sage to be rejected by the recipient.

Also, a person can generate the encryption keys in a WSN,
but this is typically impractical and ultimately insecure, as we
will see below. Ideally, we’d ask computers to generate the keys
for us. We don’t want anyone to be able to guess the keys, so
we’d like them to be random, and that requires a random num-
ber generator (RNG).

Usually people are happiest with computers when they are
completely deterministic, and random behavior is frowned
upon. Making a computer truly random is not a trivial task, and
it always involves interaction with something that’s non-digital.

Fortunately, radios are intrinsically non-digital, and it has
taken a century of progress from the days of Marconi to get
them to the point where they deliver digital messages reliably.
Any well-designed WSN system will use the radio or some
other source of thermal noise as an integral part of its RNG
and will generate truly random numbers.

Finally, even a legitimately obtained yet incorrectly
deployed device could confuse a control system not expecting
an additional input. Access control lists (whitelists, blacklists)
provide an additional layer of control to ensure that unwanted
devices can’t disrupt a network.

LACK OF UNDERSTANDING

The single most common mistake in WSN security is not
appreciating the magnitude of the problem until it is too late.
Building and deploying a wireless lighting control system
without security may not sound like a problem until the local
college students start making light shows out of your cus-
tomers’ office spaces. Even those who realize that security is
important may not appreciate the widespread sophistication,
software and hardware tools, and skills that are available and
regularly applied on the dark side of this conflict.

Several WSN companies boast that their channel-hopping
protocols have some security benefit, as if an attacker will not
be able to buy a multichannel receiver and transmitter. Others

IndustryTrends

Data client

Whitelisting/blacklisting
prevents unauthorized

devices

Security uses nonce,
so messages can’t be

replayed

Message

Message

Message Message

Modified
message Secret session keys

based on approved RNG
prevents man-in-the-middle

attacks

Unwanted
node

Forwarding
node

Copy

Attacker

Node

Message encrypted end-to-end
so it can’t be understood

by eavesdropper

3. Proper use of well-

known security tech-

niques allows reliable

delivery of confidential,

authentic, unmodified

messages from source to

destination. Invalid use or

attacks are both detect-

ed and thwarted.

42 JUNE 2014 ELECTRONIC DESIGN

seem to think that millions or billions of keys is
enough to prevent a successful attack, when in
fact even billions of billions is not enough.2
If there is the possibility of a brute force
attack revealing a key, then a key-rotation
schedule that is a small fraction of the
brute force time will deter the aver-
age attacker, but might not stop a very
lucky one.

SHARED KEYS AND SOFTWARE

REVERSE ENGINEERING

Assuming that a proper cipher has been chosen, and nonces
are used, the simplest system will use a single shared key for all
cryptographic operations. This approach is fine as long as the
key remains secret, but that is a difficult goal to achieve.

An extreme example is the reported vulnerability of a
Bluetooth-controlled toilet/bidet combo, in which the default
pairing key of all zeros was used.3 This is really more an exam-
ple of “no security” than poor security, but illustrates the point
that the best protocols are no defense against poorly chosen
keys, or even a random key that becomes widely known on
the Internet. Bluetooth has excellent security tools. But if you
don’t use them properly, they are worthless once someone
publishes your ill-advised product-wide key on the Web.

The next level is to have a single unique key for each network
that is delivered or installed, or a new key each time a network
is formed. If you have a good RNG, and you control all of the
hardware in your network, then this approach is fine. But if any
one node in the network is compromised, then the entire net-
work is open to attack. If users are allowed to write their own
software on the nodes in the network, then it is quite difficult to
prevent a malicious user from finding the network key.

Even if the node software is closed, it is quite difficult to pre-
vent attackers from reading out the code in a microprocessor
if they have possession of the hardware. The security literature
is filled with examples of such attacks, which often go like this:
obtain a legal version of the hardware and break into it to get
the code; reverse engineer the code to figure out where the key
is stored (this can be as simple as compar-
ing the code from two different networks
to see which bits are different); and use
this information to either figure out how
the key was calculated (see “Poor Quality
RNG” below) or to make it much quicker
to get the key out of hardware captured
from the actual network under attack.

DVD security has fallen victim to
such attacks, both with the original DVD
Content Scrambling System (CSS) and
the HD-DVD/Blu-ray Advanced Access

Content System (AACS). Hackers examining player code and
exposing and publishing several of the processing keys pro-
tecting that material compromised both.4

With very rare exceptions, you must assume that a deter-
mined attacker will be able to obtain your hardware, read
out your code, and reverse-engineer your algorithms and
software. As a result, a well-designed security system must not
depend on the algorithms and software remaining secret, and
it must not rely on the key or keys in any one device remaining
secret. An attacker that has one of the network nodes must be
assumed to be able to gain complete control of that node. In a
well-designed system, the compromise of a single node must
not affect security in the rest of the network.

The simplest solution to this reverse-engineering problem
is to ensure that every communication session (or flow of
data between two endpoints) has its own unique keys that are
unknown to any other nodes in the network. In this case, even
a compromised node in the network cannot snoop, manipu-
late, or impersonate the data or commands from any other
node in the network.

KEY DISTRIBUTION

Assuming that appropriate protocols and ciphers are used, a
network with unique random keys for each end-to-end session
protects the confidentiality, integrity, and authenticity of net-
work communication (Fig. 2). However, arriving at this situation
presents vulnerabilities in some systems.

It is usually inconvenient to pre-program every node in
the network with all of the unique keys
that it will need for all future sessions, so
keys need to be distributed after network
formation. In some systems, this has been
done by sending the initial session keys
“in the clear” (not encrypted), under the
assumption that the network is then only
vulnerable to an attack for a brief period
during network formation. Unfortunate-
ly, an attacker may well be able to set up
snooping equipment and wait patiently
for a network reset, or in fact cause a net-

IndustryTrends

4. Linear Technology’s SmartMesh LTC5800

(system-on-chip) and LTP5900 (module)

families are the industry’s lowest-power

IEEE 802.15.4E compliant wireless sensor net-

working products. SmartMesh ICs and modules

enable tiny sensor “motes” to be designed with a

battery life of over 10 years, while companion net-

work manager components enable the development

of highly robust and secure WSNs.

MORE ON WIRELESS SENSORS

Go to electronicdesign.com and see:

• �Advanced Smart Sensor Networks

Open Up A Multitude Of Applications

• �Wireless Vibration Sensors Enable

Continuous And Reliable Process

Monitoring

• �Energy Harvesting Powers Wireless

Sensor Networks In Industrial Apps

 JUNE 2014 ELECTRONIC DESIGN

IndustryTrends

work reset by power cycling the network
controller or gateway, or through some
other method.

A simple solution is to install a single
unique key on each node in the network
at manufacturing time and have a single
trusted security manager in the net-
work, which is given those keys, allow-
ing a secure session between each node
and the security manager. The security
manager then generates the required
keys for all other sessions and sends
them via its secure channels to each of
the devices involved. Alternatively, there
is another suite of tools using public
key infrastructure that provides similar
functionality as well as other benefits.5

POOR QUALITY RNG

Among those who take security seri-
ously, perhaps the most common mis-
take is the use of an RNG with poor
randomness. Even with all of the prop-
er protocols and ciphers, the network
is only as challenging to attack as the
keys are difficult to guess. The use of
non-cryptographic random number
generators or cryptographic random
number generators with seeds (initial
values) that are non-random is a com-
mon mistake.

Random numbers are useful in many
different applications in computer sci-
ence, so many operating systems have
a “rand()” function built in. For exam-
ple, the original UNIX rand() function
maintained an internal 32-bit state and
computed the next random number and
next state based on the current state. A
user could seed this RNG with a 32-bit
number, and then each call to rand()
would generate the next value in a
sequence of 4 billion values. It wasn’t a
great RNG, but it was good enough for
most non-cryptographic applications.

Today, however, it would be a simple
homework assignment to generate a
table in a single desktop computer that
contained all 4 billion possible ran-
dom numbers and their location in the
sequence. No amount of randomizing

the seed will help. The RNG itself is not
sufficiently sophisticated.

Cryptographic RNGs use much more
internal state—typically at least 128 bits.
With 128 bits, as discussed above, even
billions of computers operating for bil-
lions of years are extremely unlikely to
find a pattern in the sequence of num-
bers. The implementation and test pro-
cedures of good cryptographic RNGs
are well documented.6

Even the best RNG algorithm is only
as random as the seed it was provided.
IOActive pointed out a common mis-
take in two WSN security systems by
reverse engineering the software bina-
ries of both products to discover that
they were using a very non-random
seed.7 Both products used the time
function (in seconds) as the seed of their
random number generator. Since there
are only a few tens of millions of seconds
per year, even a modest laptop computer
can generate all possible keys by a quick
search of the last few decades.

SECURE NETWORKS

While the news is full of examples
of failed wireless security, the world is
filled with wireless networks that are, in
fact, secure. Secure networks just aren’t
newsworthy. As discussed, a secure net-
work requires both a secure protocol
and a secure implementation (Fig. 3).

Some examples of well-designed
security protocols in WSNs include the
Wireless HART and ISA100.11a indus-
trial automation protocols, as well as
the ZigBee Smart Energy protocols.
All of these protocols have undergone
extensive review by security experts,
and many implementations have sailed
through similar review.

In particular, the Wireless HART
protocol is the basis of secure networks
deployed in critical infrastructure appli-
cations all over the world, from the Arctic
Circle to the Arabian Desert. End users
of this technology trust WSNs to supply
process control information reliably and
confidentially between authenticated end

GO TO ELECTRONICDESIGN.COM 45

points. Customers in such industries, as well as the vendors who
supply them, have confidence in their networks because of deep
analysis and testing of the protocols and implementations that
underlie them.

In WSNs for industrial process automation, it was under-
stood from the beginning that security was critical, and the
protocols and implementations reflect that reality. As new
protocols emerge, especially for the Internet of Things, some
hard lessons will need to be relearned in application environ-
ments where it may not be as obvious that security is critical.
As the preceding examples have shown, there are some who
have not yet learned these lessons. Fortunately, it is just as easy
to provide “industrial quality” security in Internet Protocol
(IP) applications as in industrial applications.

End users have deployed SmartMesh IP embedded wireless
mesh sensor networks from Linear Technology’s Dust Networks
line in some of the toughest RF environments, including indus-
trial process plants, data centers, smart parking applications,
railcars, and mining. Built on Linear’s ultra-low-power LTC5800
802.15.4 system-on-chip, SmartMesh networks are embedded
systems complete with hardware and networking software that
deliver secure mesh sensor networks with >99.999% data reli-
ability and ultra-low power (Fig. 4). SmartMesh networks have
several layers of security to address confidentiality (through
encryption), integrity (of a message), and authenticity (verifying
that a message is from the stated sender).

CONCLUSION

The consequences of poor security in wireless sensor net-
works are severe. It is unfortunate that there has not been a
serious attempt to secure many products on the market today,
or that those that have done so have failed in that effort. Fortu-
nately, by using well-established principles, appropriate proto-
cols and ciphers, and the randomness inherent in the physics
of thermal noise, it is possible to build systems that are both
secure and efficient. Many such protocols and implementa-
tions exist, and there are secure wireless networks all over the
world. Everyone in the wireless sensor networking space will
benefit when all of the rest of the networks are secure too.

REFERENCES
1. “The Real Story of Stuxnet,” IEEE Spectrum, David Kushner, http://spectrum.
ieee.org/telecom/security/the-real-story-of-stuxnet
2. “Cracking DES,” Electronic Frontier Foundation, O’Reilly Media, 1998.

IndustryTrends

MORE CONTRIBUTED ARTICLES

For more articles that address common design problems

written by engineers just like you, go to http://electronicdesign.

com/learning-resources/design-solutions. To submit your own

article, go to http://electronicdesign.com/submit-articles.

 JUNE 2014 ELECTRONIC DESIGN

3. TrustWave SpiderLabs Secur i ty Advisory
TWSL2013-020: Hard-Coded Bluetooth PIN Vulner-
ability in LIXIL Satis Toilet, https://www3.trustwave.
com/spiderlabs/advisories/TWSL2013-020.txt
4. AACS encryption key controversy, https://
en.wikipedia.org/wiki/AACS_encryption_key_con-
troversy
5. Public-key infrastructure, https://en.wikipedia.org/
wiki/Public_key_infrastructure
6. “Annex C: Approved Random Number Genera-
tors for FIPS PUB 1402, Security Requirements for
Cryptographic Modules,“ Randall J. Easter and Car-
olyn French, http://csrc.nist.gov/publications/fips/
fips140-2/fips1402annexc.pdf
7. “Compromising Industrial Facilities from 40 miles
away,” IOActive, Lucas Apa and Carlos Holmman,
Blackhat 2013.

KRIS PISTER is the

founder and chief tech-

nologist of the Dust Net-

works Product Group, Lin-

ear Technology Corp. The

inventor of Smart Dust,

he cofounded Dust Net-

works in 2002 to deliver his vision of a com-

mercially robust wireless sensor networking

platform. The company was acquired by

Linear Technology in 2011. He also is the

chief architect of Dust Networks’ patent

pending Dust SmartMesh technology. He

is a frequent invited speaker and lecturer

on wireless sensor networking and related

core technologies. He is also a professor of

electrical engineering and computer sci-

ences at the University of California, Berke-

ley. He holds a PhD and MS in electrical

engineering and computer sciences from

UC Berkeley and a BS from UC San Diego.

JONATHAN SIMON is

the systems engineering

lead of Dust Networks

Products, Linear Technol-

ogy Corp. He has over a

decade of experience

making the lowest power,

highest reliability wireless sensor networks in

the world. Previously, he worked at Agilent

research labs focusing on opto-mechan-

ical design and thermal management

for high-speed optical communications

modules, at LLNL on counter proliferation

technologies, and briefly as a special ef-

fects artist. He has a PhD in mechanical

engineering (MEMS) from the University of

California, Los Angeles.

IndustryTrends

