
6/10/13 1:05 PMSurveying The Verification Landscape

Page 1 of 6http://electronicdesign.com/print/eda/surveying-verification-landscape

Related Articles

Sizing Up The
Verification Problem
Faster JESD204B
Standard Presents
Verification Challenges
Hybrid Execution And
Software-Driven
Verification Will Emerge
In 2013

print | close

Surveying The Verification Landscape
Electronic Design

Adnan Hamid

Adnan Hamid, Contributing Technical Expert
Tue, 2013-05-28 16:42

Verification solutions must be usable across the complete flow, from block-level verification to full system-on-
chip (SoC) simulation. Graph-based solutions can meet this requirement (see “Sizing Up The Verification
Problem”). However, that’s just one aspect of a verification solution’s scalability. Most companies use a bottom-
up flow, which has some implications on the tools that they use for verification. Some companies, though, are
moving to a top-down flow because today’s systems involve more than hardware.

Traditional Verification

Most companies use bottom-up verification simply because of historical
reasons. Until recently, the implementation model was the only executable
model that existed for the system. That description was written at the
register transfer level (RTL), and it is considered to be the golden model for
the design. This was the first point at which any form of verification could
begin.

The development process then follows the traditional V diagram where
verification forms the right edge of the V (Fig. 1). On the left side of the V,
the design was decomposed from a paper specification, often an iterative
process, and it might have included the selection of intellectual property
(IP) blocks and formation of the chip architecture. Aspects of the system
such as the communications network were also defined at this stage.

http://electronicdesign.com/digital-ics/sizing-verification-problem
http://electronicdesign.com/analog/faster-jesd204b-standard-presents-verification-challenges
http://electronicdesign.com/news/hybrid-execution-and-software-driven-verification-will-emerge-2013
javascript:window.print();
javascript:window.close()
http://electronicdesign.com/electronic-design-0
http://electronicdesign.com/author/adnan-hamid
http://electronicdesign.com/digital-ics/sizing-verification-problem


6/10/13 1:05 PMSurveying The Verification Landscape

Page 2 of 6http://electronicdesign.com/print/eda/surveying-verification-landscape

The process stopped when the blocks defined were small enough for a single engineer or a small group of
engineers to implement. Specifications for the blocks were still defined in paper documents. Individual blocks
were verified, integrated into subsystems, and re-verified. That process was repeated all the way until the full
system had been assembled. At that point, some level of validation of the full SoC specification could also be
attempted.

This process is failing for a number of reasons, including the speed of software simulators when full chips are
assembled and the difficulty in creating useful tests at the system level using constrained-random generation
tools. Also, none of these tools can test things other than pure functionality.

For example, a constrained-random approach can’t develop a stress test or a test for measuring performance.
Emulation and FPGA prototyping can be used to improve the performance of the simulation process. However,
these approaches require significant changes in the testbench or even a change in verification methodology. In
addition, they trade off performance for other aspects such as cost, turnaround time, visibility, and
debuggability. Simulation, emulation, and prototyping are each superior solutions at some point in the
verification flow, so many companies are now employing all three in their methodology.

Processors Complicate The Process

Another significant difficulty comes with designs that include one or more processors, and there are few SoCs
these days that don’t. In fact, the vast majority of complex chips have several heterogeneous processors. The
constrained-random process requires these processors to be removed and replaced by a transactor model.
Stimulus is then generated by the tool and fed into the transactor to emulate operations on the processor bus.
The tool has to take this approach because it has no way to generate software to run on the processors. Running
production code, even if it is ready, may constrain the verification process too much.

This replacement provides fine control over the busses, although it may be difficult to constrain it to realistic
sequences, as would be generated by a processor. Processor removal makes the transition to emulation and
FPGA prototypes difficult because this separation would create a significant amount of traffic between the
hardware-accelerated portion of the design and the portion of the design that remains in a software simulator,
including the testbench. The communication would reduce the performance of the hardware portion. In
addition, having different strategies for the processors would again require a change in verification
methodology. A consistent verification methodology is a second dimension of scalability that existing solutions
don’t address.



6/10/13 1:05 PMSurveying The Verification Landscape

Page 3 of 6http://electronicdesign.com/print/eda/surveying-verification-landscape

Changing Methodology

This bottom-up verification methodology is breaking down rapidly, and many of the most advanced
semiconductor companies are now switching to a top-down flow principally because systems are no longer just
about the hardware. Today, the differentiation in systems comes from the software. Due to tightening product
development cycles, the software team cannot wait until completion of the hardware implementation to start
software integration and verification.

In many cases, design decisions need to be made by both teams working together. This requires an executable
model much earlier in the design process, a model generally called a virtual prototype. These virtual prototypes
are written at the transaction level using languages such as C, C++, or SystemC. Models do not contain all of the
implementation detail and can execute much faster than RTL models.

In many cases, models are fast enough to be able to execute significant amounts of software. The lack of
implementation detail means that these models cannot be the only ones on which verification is performed.
Changes in timing, even slight changes, can affect the way in which the system operates. Good design practices
can minimize this impact.

In terms of the V diagram, we are starting to perform verification on the left edge of the V as design decisions
are made. This is not a problem. It is an opportunity because, when verification starts earlier, many important
aspects of a system can be verified before time is spent on the detailed design. This, in turn, means that
specifications for the blocks are pre-verified. While it would be premature to say that integration problems are a
thing of the past, a verified specification will prevent this type of problem from being found late in the design
cycle.

Bringing Formal Verification Into The Picture

While simulation is used for a significant portion of the verification process, formal verification can perform
some tasks faster and more completely than simulation. This is especially true when a system includes safety-
critical functionality or high-risk parts of the design. This may include the communications infrastructure or
those aspects of a system involved with data integrity. Until now, it has been difficult to effectively combine
formal verification with simulation and to be able to define them in a way that limits overlap and repetition in
the verification process. This inability inevitably leads to wasted time and resources.

Standards such as the recently announced Accellera Universal Coverage Interoperability Standard (UCIS) hope
to find ways to reduce this redundancy, but coverage metrics used by the two methodologies are based on
different concepts and combining them is difficult. Formal methods use a response-based metric system,
whereas constrained-random methods use a stimulus-based metric.

A unified metric is the ideal approach. Given that stimulus-based coverage associated with the constrained-

random process has problems related to actual effectiveness of the verification process,1 a metric similar to
those used by formal verification based on goals or outcomes would be better. Also, the transformation of

verification goals to the stimulus metrics in use today is one of the most difficult tasks in the methodology.2

Scalability In A Top-Down Flow



6/10/13 1:05 PMSurveying The Verification Landscape

Page 4 of 6http://electronicdesign.com/print/eda/surveying-verification-landscape

A verification methodology that can evolve throughout the design and implementation flow and bring formal
methods and simulation closer together is needed. It must be able to work with the virtual prototype and RTL
model executed by a simulator, emulator, or FPGA prototype. A single testbench should be able to work with all
of these elements during the development flow.

This also brings about some other requirements for the verification methodology. For example, it should be
possible to start verification with a partial testbench because we cannot have the entire process stalled waiting
for a single piece. Over time, the testbench can be refined along with the design. It should be possible to verify at
the complete system level, the block level, and everything in between with the fewest changes possible.
However, the bottom-up aspect of the flow does not go away, especially when IP blocks are to be used within the
system.

The testbench created for IP blocks should be consumable by the higher levels of integration without change or
the need to be able to understand them. We have thus defined three fundamental scalability needs of a solution
within a flow:

• It should work across all abstractions.

• It should work with all methods of model execution.

• It should integrate formal verification into the flow.

Verification From The Inside Out

The key aspect to making a flow such as this possible is to focus on the processors, designed, along with the
communications infrastructure, to be able to control other aspects of the chip. Rather than seeing processor
buses as primary inputs to the design that have to be controlled by a constrained-random pattern generator, it is
better to write software that will run on those processors to perform the necessary verification. A simulator,
emulator, FPGA prototype, or even the final chip should all be able to run the same software. The same is true
for the virtual prototype so long as the processor model is source-code compatible. Most models go much
further than this and are object-code compatible with the actual device.

But writing software manually is not the solution, equivalent to creating directed tests for other pieces of the
design. Instead, the software should be automatically generated, with each software test case verifying a
particular aspect of the design, which is key. We do not want to generate random test cases with the hope that it
will do something useful and then spend time and effort looking for the ones that do. Rather, we want each test
to be created for a defined purpose to satisfy a particular coverage goal.

How does all of this happen? The graph-based model is a fundamental part of the solution. If SoC functionality
is represented as a graph-based scenario model, verification goals are shown on the left with design inputs on
the right (Fig. 2). Constrained-random stimulus starts at the right and attempts to reach interesting verification
states with no guarantee of success.



6/10/13 1:05 PMSurveying The Verification Landscape

Page 5 of 6http://electronicdesign.com/print/eda/surveying-verification-landscape

In contrast, a graph-based constraint solver can select a verification goal, determine exactly the path needed to
achieve that goal, and generate the appropriate software test case to execute on the embedded processors. As an
added benefit, this goal-based verification approach is more aligned with formal verification, making it easier to
consider a single, unified, verification methodology.

Conclusions

Scalability is necessary for a modern verification flow, including the ability to consistently use different
execution engines such as a virtual prototype, simulator, emulator, or FPGA prototype. The verification
methodology must be able to handle multiple levels of abstraction so the same approach can be used throughout
the development process.

Unifying formal verification into the flow would eliminate unnecessary verification. Graph-based verification
with a solver based on goal satisfaction can generate software to run on the processors and coordinate that with
external stimulus to produce highly efficient verification test cases.

References



6/10/13 1:05 PMSurveying The Verification Landscape

Page 6 of 6http://electronicdesign.com/print/eda/surveying-verification-landscape

1. Mark Hampton, “Functional Qualification,” EE Times EDA Designline, www.eetimes.com/design/eda-
design/4018490/Functional-Qualification

2. Brian Bailey, “DVCon Panel: Verification planning,” EDN, www.edn.com/electronics-blogs/practical-chip-
design/4408522/DVCon-Panel--Verification-planning

Adnan Hamid is cofounder and CEO of Breker Verification Systems. Prior to starting Breker in 2003, he
worked at AMD as department manager of the System Logic Division. Previously, he served as a member of
the consulting staff at AMD and Cadence Design Systems. He graduated from Princeton University with
bachelor of science degrees in electrical engineering and computer science and holds an MBA from the
McCombs School of Business at the University of Texas.

Source URL: http://electronicdesign.com/eda/surveying-verification-landscape

http://www.eetimes.com/design/eda-design/4018490/Functional-Qualification
http://www.edn.com/electronics-blogs/practical-chip-design/4408522/DVCon-Panel--Verification-planning
http://electronicdesign.com/eda/surveying-verification-landscape

