
By TAMMY CARTER, Curtiss-Wright Defense Solutions

F
or military intelligence, surveillance, and reconnais-
sance (ISR) applications, such as radar, EO/IR (electro-
optic/infrared), or wideband ELINT (electronic intel-
ligence), the ongoing problem is how best to handle

the expanding “firehose” of data, fed by an increasing number
of wide-bandwidth platform sensors. To handle this massive
inflow of data, and the complex algorithms required to process
it, state-of-the-art computational engines and data-transport
mechanisms are essential.

Deployed High Performance Embedded Computer (HPEC)
systems designed to support these applications typically have
a heterogeneous architecture of high-performance FPGAs,
GPUs, and digital signal processors, or DSPs (today, often
Intel Xeon-D based modules). GPUs provide a large number
of floating-point cores tuned for complex mathematical
algorithms, which makes them ideal for processing the
complex algorithms used in ISR applications. In comparison, a
single Intel Xeon-D processor can provide a peak throughput
of ~600 MFLOPS, while NVIDIA’s Pascal P5000 GPU sports
6.4 TFLOPS of peak performance.

Tighter Integration
Today, ISR system integrators have three main goals:

minimize latency, maximize system bandwidth, and optimize
configuration flexibility within their given SWaP constraints.
To address these issues, leading COTS vendors of OpenVPX
modules are seeking ways to provide closer integration
between the compute elements.

In the beginning, sensor data preprocessed by the FPGA
had to be copied to the CPU, which subsequently copied it to
the GPU for further processing. Then, NVIDA introduced
GPUDirect, which added the capability to move the data

directly from an FPGA or network interface, such as Mellanox
Infiniband, to a GPU. By eliminating extra copies, both latency
and backplane utilization were decreased.

Such an approach works well until the amount of incoming
data overwhelms the system, such that one batch of data
hasn’t completed processing before the next batch of data
arrives. This can result either from the transport systems
being overwhelmed (I/O bound) or the GPU not completing
the calculations in the required time frame (compute bound).

When using GPUs, the limiting factor is often the I/O, and
this is usually addressed by employing either a round-robin
distribution of the incoming data, and/or pipelining the
processing stages. Unfortunately, as sensor data continues
to increase, it’s become apparent that new techniques are
required.

PCI Express
In OpenVPX systems, the standard interface between the

FPGAs, GPUs, and CPUs is PCI Express (PCIe)—it offers
the fastest path to and from the processor, and by definition,
connects to other devices via the expansion plane. Offloading
the Ethernet with the PCIe connection reduces latency and
increases throughput.

Based on the original PCI parallel bus design, PCIe is
controlled by a single “master” host called the root complex
that scans the bus to find and enumerate all connected devices.
When a PCIe switch is used to connect multiple devices to
a root complex, it’s called a transparent bridge (TB), and all
devices operate in a single address space. With a TB, two root
nodes (processors) can’t be connected because there will be a
memory address conflict.

Employing strategies such as GPUDirect, PCIe Device Lending, and implementing
SISCI API can help system integrators optimize ISR solutions.

GPU Trends: The Quest for
Performance, Latency,
and Flexibility in ISR Systems

1 ELECTRONICDESIGN.COM

When a PCIe switch port is configured as non-transparent
bridge (NTB), a root node doesn’t look to enumerate devices
beyond that switch port. So, when either of the two processors
enumerates their NTB port, the port requests memory on
that processor. The NTB port provides the common memory
address translation to either side.

Multicasting
The next step to reducing latency is to multicast the incoming

data to multiple GPUs. Until recently, multicasting GPUs in
deployed ISR systems has been impractical because previous
PCIe implementations were hampered by the traditional
design limitations of one-to-one connections. The problem of
how to multicast data across multiple GPUs using PCIe links
increases the already complex task of programming the PCIe
interface and setting up the bridges and root complexes.

Included in Curtiss-Wright’s OpenHPEC Accelerator Suite,
Dolphin Interconnect Solutions’ PCI Express (PCIe) Fabric
Communications Library provides the software needed to
squeeze every ounce of performance from the PCIe interface.
It also eases PCIe programming by abstracting the otherwise
time-consuming code to simple APIs.

The Software Infrastructure Shared-Memory Cluster
Interconnect (SISCI) is a well-established API and is the
fastest way to exchange data. It can be used for Programmed
IO (PIO), where a pointer is used to directly access the remote
memory with the lowest latency, or as remote direct memory
access (RDMA) where the DMA controller of the PCIe-NTB
copies data from remote to local memory with the highest
bandwidth.

One of the latency-reducing features of SISCI is reflective
memory/multicast. The PCIe switch will send out data on
all connected ports simultaneously, meaning all nodes will
receive data virtually simultaneously when connected to a
single switch. When multiple bridges are used, each switch
hop will add a tiny delay to the data delay.

In a typical backplane-based ISR system, the CPU is tied

directly to a GPU that resides on its XMC mezzanine card, or
in a separate slot in the chassis. For example, dual Xeon-Ds
on a 6U OpenVPX board are connected via a PCIe switch.
Likewise, a 6U GPU card might have two GPUs connected
via a PCIe switch to each other and the backplane. Using this
two-board 6U DSP and GPU system “slice,” one Xeon-D can
control both GPUs, or each of the Xeon-Ds can control one of
the GPUs. With a three-board combination of one DSP board
and two GPU boards, one Xeon-D controls the upstream
GPU card while the second Xeon-D controls the downstream
GPU board.

If the system is based on the smaller 3U OpenVPX form
factor (see figure), the latency issue becomes even more acute
because there might only be one x4 PCIe link available to
the CPU board. The solution becomes even trickier if the 3U
system doesn’t include a central switch.

Creating Flexibility in Combined Systems
ISR systems can run multiple modes, but now system

integrators also want the ability to combine systems,
such as radar and EW, into a single processing box. In
such a configuration, the data flows and the computation
requirements will vary greatly between each system’s modes.
Since the GPUs and FPGAs are attached with cables, or
connected via the backplane, flexibility can be tricky. Some
flexibility might be achieved by reconfiguring the PCIe bridge
ports, but what if a CPU could borrow a GPU, FPGA, or even
non-volatile memory attached on the PCIe bus?

With PCIe Device Lending by Dolphin, devices can be
borrowed over the PCIe network without any software
overhead. Device lending is one simple way to reconfigure
systems and reallocate resources. The lending function makes
the devices available on the network for temporary access. The
borrowing function searches the available devices, and then
the selected devices can be borrowed temporarily as required.
When the work is complete, the devices will be released.

At the GTC 2019 conference, Dolphin demonstrated its
proof-of-concept software library for
creating GPU-oriented applications
with GPU Direct using capable GPUs
and commodity NVMe disks. The
memory-mapping capabilities of PCIe
NTBs are used to set up efficient I/O
data paths between GPUs and disks
that are attached to different root
complexes, allowing multiple GPUs to
access a remote disk.

While GPUs have clear advantages
for a variety of high-performance
ISR applications, some designers
are concerned with the lack of
determinism exhibited by these

Xeon-D
processor

x4

3U
GPU

x16

DSP #2

XMC
GPU

x8 x8

x4

x16 x16

Root
complex

Root
complex

NTB NTB

P1 P1

DSP #1

XMC
GPU

x8

x4x4

Xeon-D
processor FPGA

Here’s an example of a 3U configuration.

2 ELECTRONICDESIGN..COM

devices. The good news here is that NVIDIA is now working to
improve determinism on their GPUs. In CUDA, NVIDIA will
expose APIs to describe tasks and the dependencies between
tasks, thus providing more control over them. At the system
level, NVIDIA is working on a timing-triggered scheduler.

What About Legacy Code?
While new systems can readily benefit from these recent

advances in GPU architectures, there is, of course, lots
of legacy software still in use. Helping to protect the vast
investments in this legacy code is OpenACC. It’s a standard
programming language that makes optimizing and porting
older existing serial code to a multicore processor, like the
Xeon-D or a GPU, a very simple process.

All that’s required with OpenACC is a hashtag and a
definition of the platform that the code will run on. In turn,
the code will be able to run on the targeted board. This makes
it possible to have optimization pragmas that enable code to
be parallelized in small incremental stages (like one loop at
a time), essentially allowing the system to take “baby steps”
when optimizing/porting the existing code. While not as
efficient as handwriting the code in CUDA, the results are
impressive, and over the course of a few weeks can deliver
great results for optimizing and porting years-old legacy code
to a GPU.

When searching for the best possible signal-processing
performance from a heterogeneous system, it’s good to
consider using GPUDirect to cut out the “middle man”
CPU in order to reduce latency. The next step is to explore
multicasting from the front end to multiple GPUs and CPUs,
even if the data must pass through several bridges.

For maximum system flexibility, integrators should check
out a library system of devices that can be borrowed using
PCIe Device Lending. Keep software on time and under
budget by using the SISCI API instead of writing all the PCIe
code from scratch. For fast-turn porting of legacy, play with
pragmas in OpenACC. These strategies can be helpful guides
for any ISR system integrator seeking improved performance,
latency, and flexibility.

3 ELECTRONICDESIGN.COM

