
print | close

Electronic Design

William Wong

Fri, 2016-07-15 16:32

Embedded developers need to deploy ever-more complex systems to take advantage of hardware whose
functionality and performance continue to grow at accelerated rates. Writing a single application is still
manageable for a small microcontroller, but it’s impractical for larger systems that need a more modular
approach. Adding an operating system to the mix makes multiple applications easier to work with; however,
these days even a single operating system isn’t always the best solution.

Related

How To Choose The Right Hypervisor

Hypervisor Supports Virtual Machines

Embedded Hypervisor Delivers Separation Kernel

Hypervisors are a way to manage virtual machines (VMs) on processors that support the virtual replication of
hardware. Not all processors have this type of hardware—it’s typically found in mid- to high-end
microprocessors. It’s standard fare on server processors like Intel’s Xeon and found on most application
processors such as the Arm Cortex-A series. Typically, a VM will run any software that runs on the bare metal
hardware while providing isolation from the real hardware. Type 1 hypervisors run on bare metal, while Type 2s
have an underlying operating system (see figure, a).

Containers vs. VMs

Containers also provide a way to isolate applications and provide a virtual platform for applications to run on
(see figure, b). Two main differences exist between a container and a hypervisor system.

The container’s system requires an underlying operating system that provides the basic services to all of the
containerized applications using virtual-memory support for isolation. A hypervisor, on the other hand, runs
VMs that have their own operating system using hardware VM support. Container systems have a lower
overhead than VMs and container systems typically target environments where thousands of containers are in
play. Container systems usually provide service isolation between containers. As a result, container services
such as file systems or network support can have limited resource access.

There is also something called para-virtualization, which is sort of a mix between the two approaches. It uses
virtual-memory support for isolation, but it requires special device drivers in the VM that are linked through the
hypervisor to the underlying operating system, which in turn provides the device services.

A hardware VM system forces any communication with a VM to go through the hardware. Some systems allow
real hardware to map directly to a VM’s environment, enabling the VM’s device driver to directly handle the
hardware. Hardware I/O virtualization also allows a single hardware device like an Ethernet adapter to present

What’s the Difference Between Containers and Virtual Machines? http://electronicdesign.com/print/dev-tools/what-s-difference-between-co...

1 of 3 7/15/2016 5:01 PM



ultiple, virtual instances of itself so that multiple VMs can manage their instance directly.

In a nutshell, a VM provides an abstract machine that uses device drivers targeting the abstract machine, while
a container provides an abstract OS. A para-virtualized VM environment provides an abstract hardware
abstraction layer (HAL) that requires HAL-specific device drivers. Applications running in a container
environment share an underlying operating system, while VM systems can run different operating systems.
Typically a VM will host multiple applications whose mix may change over time versus a container that will
normally have a single application. However, it’s possible to have a fixed set of applications in a single
container.

Virtual-machine technology is well-known in the embedded community, but containers tend to be the new kid
on the block, so they warrant a bit more coverage in this article. Containers have been the rage on servers and
the cloud, with companies like Facebook and Google investing heavily in container technology. For example,
each Google Docs service gets a container per user instance.

A number of container technologies are available, with Linux leading the charge. One of the more popular
platforms is Docker, which is now based on Linux libcontainer. Actually, Docker is a management system that’s
used to create, manage, and monitor Linux containers. Ansible is another container-management system
favored by Red Hat.

Microsoft is a late arrival to the container approach, but its Windows Containers is a way to provide container
services on a Windows platform. Of course, it’s possible to host a Linux container service as a VM on Microsoft
server platforms like Hyper-V. Container-management systems like Docker and Ansible can manage
Windows-based servers providing container support.

Based-File Systems, Virtual Containers and Thin VMs

Containers provide a number of advantages over VMs, although some can be addressed using other techniques.
One advantage is the low overhead of containers and, therefore, the ability to start new containers quickly. This
is because starting the underlying OS in a VM takes time, memory, and the space needed for the VM disk
storage. It may be difficult to address the time issue, but the other two can be addressed.

The easiest is the VM disk storage. Normally, a VM needs at least one unique image file for every running
instance of a VM. It contains the OS and often the application code and data as well. Much of this is common
among similar VMs. In the case of a raw image, a complete copy of the file is needed for each instance. This
could require copying multiple gigabytes per instance.

What’s the Difference Between Containers and Virtual Machines? http://electronicdesign.com/print/dev-tools/what-s-difference-between-co...

2 of 3 7/15/2016 5:01 PM



e alternative is to use a based-file format like QEMU’s qcow2, which is supported by Linux’s KVM virtual-
machine manager. In this case, an initial instance of the VM is set up and the operating system is installed
possibly with additional applications. The VM is then terminated and the resulting file is used as the base for
subsequent qcow2 files.

Setting up one of these subsequent files takes minimal time and space. It can then be used by a new VM, where
changes made to the disk are recorded in the new file. Typically, the based file will contain information that will
not change in the new file, although doing something like updating the operating system may cause the new file
to grow significantly. This masks the original file to the point where the original will not be referenced, since all
of its data has been overwritten.

The chain of based files can continue so that there may be a starting image with just the operating system. The
next in the chain may add services like a database application. Another might add a web server. Starting up a
new instance of a database server would build a new file starting from the image with the database in it, while a
web server with database server would start from the database/web-server file.

The use of based files addressed duplication of file storage. For memory deduplication, we need to turn to the
hypervisor. Some hypervisors can determine when particular memory blocks are duplicates, such as the
underlying OS code assuming two or more VMs use the same OS with the exact same code. This approach can
significantly reduce the amount of memory required, depending on the size of shared code or data that can be
identified.

An issue with containers is the requirement that the underlying OS be the same for all containers being
supported. This is often a happy occurrence for embedded systems in which applications can be planned to use
the same OS. Of course, this isn’t always the case; this can even be an issue in the cloud. The answer is to run
the container system in its own VM. In fact, the management tools can handle this, because a collection of
services/containers will often be designed to run on a common container platform.

Finally, there’s the idea of thin VMs. These VMs have a minimal OS and run a single application. Many times,
the OS forwards most of the service requests, such as file access, to a network server. Stripped-down versions of
standard operating systems like Linux are substantially smaller. In the extreme case, the OS support is actually
linked into the application so that the VM is just running a single program. For embedded applications, the
network communication may be done via shared memory, providing a quick way to communicate with other
VMs on the same system.

No one approach addresses all embedded applications, and there may be more than one reasonable alternative
to deploying multiple program instances. It will be more critical to consider the alternatives when designing a
system as the world moves from single-core platforms to ones with many, many cores.

Looking for parts? Go to SourceESB.

Source URL: http://electronicdesign.com/dev-tools/what-s-difference-between-containers-and-virtual-
machines

What’s the Difference Between Containers and Virtual Machines? http://electronicdesign.com/print/dev-tools/what-s-difference-between-co...

3 of 3 7/15/2016 5:01 PM


