
print | close

Electronic Design

Justin Moon

Tue, 2015-11-17 14:20

Automotive systems are inherently complex and becoming even more so. Increasingly,
vehicle manufacturers are consolidating disparate functional components, including
infotainment (navigation, multimedia, speech recognition, content management),
telematics (remote diagnostics, occupant safety and security, tracking), driver
information (instrument clusters, heads-up displays), connected services (OTASL, V2X),
and advanced driver assist.

Such an approach makes for a more integrated cockpit experience, but also ratchets up
the complexity of a vehicle’s architecture. Add in the growing connectedness of cars, and

you have greater potential for security vulnerabilities and greater access to a large number of attack surfaces.
Automotive subsystems are exposed to potential security exploits, including rendering system services
unavailable, unauthorized access to data at rest and in motion, and unsolicited remote access to system services.

Related

What’s the Difference Between Secure Comms and Secure Systems?

Can The Internet Of Things Be Secure?

The Many Faces of Embedded Security

Recent research papers have identified theoretical and practical vulnerabilities stemming from native code
exploits, most commonly buffer overflows and issues with authentication and authorization management.
Hardening of attack surfaces—not just those identified in research papers and the mass media, but in all
requisite subsystems—can mitigate the risk of exploit.

Hardening via a Chain of Trust

The best way to harden attack surfaces is to apply a “chain of trust” — fundamentally designing systems that
leverage security resources (from the reset vector through the boot process to the fully initialized system) and
employ a secure operating environment.

The first link in the chain of trust involves silicon vendors and hardware-enforced security. Securing the boot
process, both in terms of trusted code execution and proving the authenticity of the boot chain, is key to
ensuring a fundamentally secure environment. Hardware-enforced secure software execution environments
such as ARM TrustZone or Intel Trusted Execution Technology can provide secure key stores (keys injected at
manufacture to guarantee device validity).

Automotive Security and the Chain of Trust http://electronicdesign.com/print/embedded/automotive-security-and-cha...

1 of 6 11/17/2015 3:11 PM



Securing the boot process can come with tradeoffs, including lower performance. It will take longer for a system
to boot in a secure fashion. Why? Because the system must follow a number of steps to ensure the boot process
is in fact secure (Fig. 1). For example:

Upon application of power, the system must verify the boot ROM’s digital signature to ensure that the
mechanism for loading the OS and the rest of the system software is intact.
Using a public/private key verification (preferably stored in a hardware-enforced secure environment),
the system can verify the initial OS software as correct. Not all components need to be verified as a single
blob of code. Individual components can be verified in stages to satisfy boot performance requirements.
Prior to loading the contents of a file system (if present), the system can also verify the contents, through
a hash.
Once the file system is available, the system can initialize and execute additional system services.

While hardware is certainly the starting point for secure design, it alone doesn’t ensure a secure operating
environment. An operating system (OS) that’s certified in the realms of both safety (IEC 61508 or ISO 26262)
and security (Common Criteria EAL) offers a significant advantage. Security qualifications such as CC EAL 4+
provide a structured approach for evaluating various aspects of security, including user data protection,
identification and authentication, and resource utilization. The chain of trust is reinforced by the use of software
components with both a security pedigree and a safety pedigree, preferably proven with a certificate.

Safe and Secure

Is safety really an element to a secure system design? Functional safety requirements will become commonplace
outside the realm of function-specific engine controllers, as digital instrument clusters and advanced driver
assistance systems (ADAS) become more complex.

Safe system design dictates the system’s ability to meet functional requirements, handling the possibility of
random faults in the safest manner possible. Secure system design dictates the system shall meet functional
requirements, handling the possibility of directed and or malicious attempts at failure in the safest manner
possible. A system needs to react to failures, or to protect from the presence of said failures, in the safest

Automotive Security and the Chain of Trust http://electronicdesign.com/print/embedded/automotive-security-and-cha...

2 of 6 11/17/2015 3:11 PM



anner possible.

Critical systems of a vehicle are typically safety-related. Access to these systems needs to be granted in the most
secure way possible. Although the methods and philosophies of security and safety differ, in fact one may not be
an element of the other, they should be considered synonymous when dealing with any system (in-vehicle or
otherwise) where human interaction is possible.

Exploiting OS Resources

A system’s security can be further strengthened by making judicious use of the resources available through the
OS (Fig. 2). The OS kernel needs to be as small as possible, providing only core services (such as memory
management and process management), with all other services (such as file systems and device drivers) running
as memory-protected processes in user space. The OS needs to keep these processes isolated from one another
in terms of runtime environment, memory, and CPU utilization. Process isolation helps avoid vulnerabilities by
limiting access to functional blocks (system services) on a given device.

Automotive Security and the Chain of Trust http://electronicdesign.com/print/embedded/automotive-security-and-cha...

3 of 6 11/17/2015 3:11 PM



This spatial separation is accomplished through comprehensive use of the memory-management unit (MMU)
integrated into a large number of popular embedded CPUs employed in the automotive industry today.
Memory-management routines implemented within the core of the OS map each process’s virtual-memory
addresses to physical memory, providing full memory protection. Temporal separation, or the management of
CPU time, also helps to ensure the security of the running process in a given system. The OS needs to schedule

Automotive Security and the Chain of Trust http://electronicdesign.com/print/embedded/automotive-security-and-cha...

4 of 6 11/17/2015 3:11 PM



ocesses, both periodic and aperiodic, while at the same time ensuring system deadlines are maintained.
Malicious code has the potential to change the system’s functional behavior.

The operating environment should also provide the ability to guarantee minimum budgets of CPU time to
defined groups of threads, without wasting unused processing time. This effectively accomplishes two things:
system functionality can be separated at the thread level into designated “buckets,” and the scheduling of these
buckets can ensure that unexpected system loads (like malicious code) don’t affect the secure operation of the
system.

Furthermore, the OS needs to support stack properties, such as cookies, that can help identify and trap foreign
code. The compiler randomly generates stack cookies during the build process, which are then placed on the
stack upon function (source code) entry and validated upon function exit. Attempts to write beyond the limits of
the function’s frame on the stack will result in the cookie being overwritten, causing the offending process to
terminate. The APIs and tooling provided with the OS should make it possible to minimize the potential for
buffer overflows. Common API exploitation occurs through various functions that perform memory access and
string manipulations. Buffer overflows are a common exploit point at the system service level.

In addition, the OS should provide the ability to build position-independent code and other facilities that make
it harder for attackers to locate target processes. For instance, address space randomization is key to ensuring
that processes are not running at the same address from boot to boot.

Authorization Management

If implemented correctly, authorization management—effectively carving out system services and resources for
a given process—can allow for proper execution while offering fine-grained permission control. The necessity
for a process to use and maintain root privilege during runtime can be minimized significantly by implementing
an algorithm for authorization management. This algorithm must provide a request/grant system that’s more
flexible and controllable at runtime than that of the standard POSIX permission models. It would allow
processes to drop their “root” privilege and still maintain certain prescribed abilities.

Any task that happens to be compromised through an exploit has only a tiny subset of the privileged operations
available, greatly reducing the attack surface. Access control lists (ACLs) could be created to deliver more
fine-grained control of file access. Files and file systems should be able to be identified as trusted or not, and
programmatically identified as such. This idea of “pathtrust” can be leveraged to ensure that executable files are
loaded from only trusted locations on the device, minimizing the ability to inject foreign binaries.

Application sandboxing is a natural extension of authorization management. Applications that are not
considered system services, but are relevant to the feature set of the overall in-vehicle system, should be capable
of running in their own environment, completely segregated from one another as well as the rest of the system.
This sandboxing model should be able to specify the capabilities attained by the application and all resources
required to perform the application’s function. It should also provide appropriate file access and a directory
structure that’s isolated from all other applications in the system.

Building upon these isolation methods, the operating environment should provide a mechanism to ensure that
data at rest is as secure as possible. An encrypted file system is one method to ensure this. The entire file system
does not have to be encrypted. In fact, the file system should be flexible enough to support multiple secure
domains, each containing multiple files and directories. These files and directories can be in a locked or an
unlocked state. Domains themselves should also be flexible enough to be created or destroyed on demand, with
different keys depending on the key management strategy.

Hypervisor Support

Automotive Security and the Chain of Trust http://electronicdesign.com/print/embedded/automotive-security-and-cha...

5 of 6 11/17/2015 3:11 PM



he isolation methods provided by the OS are considered insufficient, or the system security model calls for
even more isolation of safety- and security-critical components, a Type 1 hypervisor may fit the bill. Type 1
hypervisors, which run on the bare metal, provide a level of isolation between operating environments. A
hypervisor model can allow system designers to isolate safety-critical elements in a “locked down” OS while
running non-safety critical services in a more connected environment.

A well-implemented hypervisor will have minimal impact on overall system performance, while also providing
better isolation than the shared kernel solutions used for symmetric multiprocessing or asymmetric
multiprocessing environments. A Type 1 hypervisor could also be configured to include a strict firewall between
the host and guest operating systems, marshaling any and all cross-boundary accesses. It’s worth noting that a
correctly utilized hypervisor solution doesn’t limit architecture or design. It allows system designers to
configure individual components of the operating environment, providing the flexibility to design a system with
maximum isolation for security elements, without affecting the function of each component. The links in the
chain of trust remain strong throughout the operating environment.

Encryption forms a significant part of any device security strategy. A secure operating environment will help
protect from external exploits, but encryption can guarantee that, even in the event of a breach, data remains
safe. FIPS-certified encrypted file systems for data at rest and the same level of security over the TLS
cryptographic protocol for data in motion should be a significant consideration. If the OS selected for the design
includes these components, one less piece of the security puzzle needs to be custom-implemented. When
available, hardware-based crypto engines can help increase overall performance while maintaining a secure
path of execution. Without encryption, it’s impossible to maintain the integrity of a chain of trust.

Clearly, many links can be forged in a chain of trust to help system designers enforce security. The hardening of
attack surfaces through hardware-assisted security, a certified OS, and the proper use of system resources is
critical. These considerations are, however, best applied as part of a well-rounded security solution that includes
capabilities like encryption and key management along with secure inspection models and testing practices.
This comprehensive approach is essential to meeting the rapidly increasing demands of device security.

Source URL: http://electronicdesign.com/embedded/automotive-security-and-chain-trust

Automotive Security and the Chain of Trust http://electronicdesign.com/print/embedded/automotive-security-and-cha...

6 of 6 11/17/2015 3:11 PM


