
print | close

Electronic Design

Odin Holmes

Tue, 2015-10-13 11:15

Special function registers (SFRs) provide an interface to core and peripheral
hardware functionality of a microprocessor or microcontroller. They are commonly
mapped into the processor’s address space, similar to RAM. To a C or C++ compiler,
SFRs are essentially indistinguishable from RAM.

On the other hand, SFRs are linked to functionality that, in contrast to plain RAM, is
externally observable. The optimizer has no knowledge of this external observability;
therefore, adding the volatile modifier to the type of SFR variables is usually
required. The volatile modifier essentially turns off all optimizations acting on the

affected address (loads and stores are not optimized away or reordered).

Related

Car-Hacked! Flaw in Jeep Revealed

What’s the Difference Between Big Data and Big Content?

DIY Makers, Hobbyists, and Experimenters Get Professional Software

Enough with the theory talk. Let's look at a real world example. Say we want to disable the spi0 clock and enable
the spi1 and i2c0 clocks on a LPC15xx Cortex M3 microcontroller. The simplest method often taught in school
would be:

(volatile int)0x400740C8 &= ~0x200; //disable spi0 clock
(volatile int)0x400740C8 |= 0x400; //enable spi1 clock
(volatile int)0x400740C8 |= 0x2000; //enable i2c0 clock

This results in the following optimized assembler on GCC 4.8. It should be noted that optimization and
code-generation results will vary depending on the surrounding code, compiler version, and settings used.

ldr r3, [pc, #24] ; load address of SYSAHBCLKCTRL1 to r3
ldr r2, [r3, #0] ; load *r3 in r2
bic.w r2, r2, #512 ; bit clear with mask of 0x200
str r2, [r3, #0] ; store r2 in *r3
ldr r2, [r3, #0] ; load *r3 to r2
orr.w r2, r2, #1024 ; bitwise or with mask of 0x400
str r2, [r3, #0] ; store r2 in *r3
ldr r2, [r3, #0] ; load *r3 to r2
orr.w r2, r2, #8192 ; bitwise or with mask of 0x2000
str r2, [r3, #0] ; store r2 in *r3

An Evolution of Special Function Register Abstraction http://electronicdesign.com/print/dev-tools/evolution-special-function-reg...

1 of 10 10/13/2015 12:39 PM

mmon Practice

Although this may be the method that’s often taught in school, the majority of production code is written using
a more sophisticated method. The above method surely violates Scott Meyers’ most important design guideline:
“Make interfaces easy to use correctly and hard to use incorrectly.” It’s also not as efficient as it could be. Can
you spot the optimization potential?

A brief search of popular github.com repositories shows this to be the most common method:

//in a library header file
#define SYSAHBCLKCTRL0 *(volatile int*)0x400740C4
#define SYSAHBCLKCTRL1 *(volatile int*)0x400740C8
#define SPI0CLK 9
#define SPI1CLK 10
#define I2CClk 13
//user code
unsigned reg = SYSAHBCLKCTRL1;
reg |= (1< reg &= ~(1< SYSAHBCLKCTRL1 = reg;

(Ed. note: From here on in, bolded items embedded in the text are code terms/functions.) Although this
method increases readability, it’s still unsafe. One could easily mix up SYSAHBCLKCTRL0 and
SYSAHBCLKCTRL1, or use SPI1CLK as a value rather than an offset. The resulting assembler is similar
except for the optimizations of merging SPI1CLK and I2CClk, and using a non-volatile temporary to allow the
compiler to remove the store and reload in the middle.

ldr r3, [pc, #12] ; load address of SYSAHBCLKCTRL1 to r3
ldr r2, [r3, #0] ; load *r3 in r2
bic.w r2, r2, #512 ; bit clear with mask of 0x200
orr.w r2, r2, #9216 ; bitwise or with mask of 0x2400
str r2, [r3, #0] ; store r2 in *r3

A C Library Solution with Tradeoffs

There are several C Libraries out there. I have chosen LPCOpen from NXP as an example because it’s quite
comprehensive and popular. LPCOpen provides a:

void Chip_Clock_EnablePeriphClock(int);

and

void Chip_Clock_DisablePeriphClock(int);

function.

Chip_Clock_DisablePeriphClock(SYSCTL_CLOCK_SPI0);
Chip_Clock_EnablePeriphClock(SYSCTL_CLOCK_SPI1);
Chip_Clock_EnablePeriphClock(SYSCTL_CLOCK_I2C0);

We can no longer use the wrong register or use the bit offset macro as a value. We also no longer need to know if
a 1 represents enabled (sometimes it’s the other way around in hardware). On the other hand, since the function
essentially takes any int (actually an enum, which is implicitly convertible from an int), we could still pass it
garbage data. Also, the names still must be a bit ugly because they’re macros.

Looking at the assembler, we can see the tradeoff that accompanies this added safety. We can no longer use the

An Evolution of Special Function Register Abstraction http://electronicdesign.com/print/dev-tools/evolution-special-function-reg...

2 of 10 10/13/2015 12:39 PM

ck of merging bits, and since the functions are contained in a separate library, the compiler can’t easily inline
them.

push {r3, lr}
movs r0, #41 ; 0x29
bl 0x228
movs r0, #42 ; 0x2a
bl 0x1f8
movs r0, #45 ; 0x2d
bl 0x1f8
pop {r3, pc}
movs r0, r0

Chip_Clock_EnablePeriphClock:
ldr r2, [pc, #40] ;
cmp r0, #31
mov.w r3, #1
itett hi
ldrhi.w r1, [r2, #200] ; 0xc8
ldr.w r1, [r2, #196] ; 0xc4
subs r0, #32
lslls r3, r0
itete ls
lslls r3, r0
orrs r3, r1
orrs r3, r1
str.w r3, [r2, #200] ; 0xc8
it ls ; unpredictable
strls.w r3, [r2, #196] ; 0xc4
bx lr
nop
ands r0, r0
ands r7, r0
ldr r2, [pc, #44] ; (0x258 cmp r0, #31
mov.w r3, #1
itett hi
ldrhi.w r1, [r2, #200] ; 0xc8
ldr.w r1, [r2, #196] ; 0xc4
subs r0, #32
lslls r3, r0
itete ls
lslls r3, r0
bic.w r3, r1, r3
bic.w r3, r1, r3
str.w r3, [r2, #200] ; 0xc8
it ls
strls.w r3, [r2, #196] ; 0xc4
bx lr
nop
ands r0, r0
ands r7, r0

If you have design constraints like legacy code, an old compiler, or specific coding guidelines like MISRA C that
you must fulfill, LPCOpen is a good choice.

A C++11 Library Solution

Using the power of C++11's constexpr and template meta programming, one can provide a familiar C-like
interface, complete type safety, and preform a number of optimizations behind the scenes at compile time
before generating the code. Here’s an example using the Kvasir library:

An Evolution of Special Function Register Abstraction http://electronicdesign.com/print/dev-tools/evolution-special-function-reg...

3 of 10 10/13/2015 12:39 PM

pply(clear(AHBClock::Enabled::spi0),
set(AHBClock::Enabled::spi1),
set(AHBClock::Enabled::i2c0));

This is coming closer to meeting the “most important design guideline.” We no longer need to remember all of
the optimization tricks we have learned. It’s surely very hard to make any mistakes. In fact, because of the
library, one can essentially skip the corresponding part of the chip's user’s manual. It just works. So what is this
complete type safety going to cost us?

ldr r3, [pc, #12] ; load address of SYSAHBCLKCTRL1 to r3
ldr r2, [r3, #0] ; load *r3 in r2
bic.w r2, r2, #9728 ; bit clear with mask of 0x2600
orr.w r2, r2, #9216 ; bitwise or with mask of 0x2400
str r2, [r3, #0] ; store r2 in *r3

Wow! The assembler code is just as efficient as the best example so far. It costs us nothing. To be fair, this needs
to be compiled with at least C++11 enabled. However, for most projects, that should not be a problem. But wait,
there’s still more optimization potential here! Can anyone spot it this time?

If you do take a look at the LPC15xx user’s manual, you will see that in this special case, all of the other bits in
byte 1 of SYSAHBCLKCTRL1 are reserved. It’s perfectly OK to write 0s to reserved bits, so instead of
modifying the whole 32 bits of the register, we can just write to byte 1 in 8-bit mode and fill in all reserved bits
with 0s.

ldr r3, [pc, #4] ; load address to r3
movs r2, #36 ; load literal 0x24
strb r2, [r3, #0] ; store in byte mode

This optimization should not be used when hand-coding—the efficiency versus readability tradeoff is not in its
favor, not to mention programmer productivity. However, by using meta programming to divide interface from
implementation, this and other optimizations can be fully encapsulated. Code readability and programmer
productivity tradeoffs are no longer an issue.

Admittedly, this is a bit of a contrived example, where we just happened to be modifying all of the non-reserved
bits in a particular byte. But if the register has larger bit fields, this special case is much more common. In other
special cases, other optimizations are possible—it all adds up in the end.

What About Larger Fields?

So far we have been setting and clearing bits. Kvasir also supports writing to bit fields in a type safe manner.

apply(write(Can::mode,Can::normalMode));

Here, Can::mode is a bit location that is two bits wide and normalMode is a compile time value of type
enum class Can::Modes.

Where Do All of These Presets Come From?

Good embedded designs usually include a hardware abstraction layer (HAL) between the application code and
low-level hardware access. The problem is, without zero cost encapsulation, many design purity versus
efficiency tradeoffs need to be reconciled. The end result often allows some hardware details to creep up into the
application code, often even in the form of ugly and error-prone preprocessor directives.

An Evolution of Special Function Register Abstraction http://electronicdesign.com/print/dev-tools/evolution-special-function-reg...

4 of 10 10/13/2015 12:39 PM

addition, the design of the HAL is typically optimized for efficiency with the specific application. This
eliminates the possibility of a generic HAL; most designs involve hand-coding the HAL as well as the
application.

With the introduction of meta programming, zero-cost encapsulation is possible and many of the design
tradeoffs are eliminated. The Kvasir library includes a small but growing number of “chip abstraction” files that
contain all of the necessary BitLocations and device-specific information for a given chip. This is an attempt,
for the first time, to provide a zero-cost HAL to the user once and for all.

Examples in this article assume a chip abstraction is present that defines things like Can::mode. You can check
if someone has made one, or build your own. Ideally, the chip manufacturer would provide these files.

What About Reading?

Reading with Kvasir::Register also works as expected:

if(UART0_CONFIG & STOP_LENGTH_MASK == 1){/*...*/}
//becomes
if(apply(read(Uart0::Config::stopLength)) == 1){/*...*/}

But wait, this will not do what you think! According to the LPC15xx user’s manual, a stop length value of 0
means 1 stop bit and a value of 1 means 2 stop bits. If we modify the type of the BitLocation stopLength to
make its value type a strongly classed enum, it’s no longer possible to make the same error:

//in a header
namespace Uart0{
struct Config{
enum class StopBits{one, two};
static constexpr Register::RWLocation<
0x40040000, //address
(1<<6), //bit field mask
(1<<1)|(5<<8)|(1<<13)|(3<<16)|(0x0F << 24), //unwritable
StopBits //value type
> stopLength{};
};
}
//in user code
using namespace Uart0;
if(apply(read(Config::stopLength)) == 1){/*...*/}
//^ error, StopBits is not convertible to int
if(apply(read(Config::stopLength))==Config::StopBits::one){/*...*/} //works

What About Clear on Read?

If you are not familiar with this problem, consider this piece of code:

if(REGISTER & 0x01){/*...*/}
else if(REGISTER & 0x04){/*...*/}

If REGISTER is clear on read, we have a very subtle bug in our code that may be missed in code review:

auto temp = REGISTER;
if(temp & 0x01){}
else if(temp & 0x04){}

An Evolution of Special Function Register Abstraction http://electronicdesign.com/print/dev-tools/evolution-special-function-reg...

5 of 10 10/13/2015 12:39 PM

is would solve the problem, but how should the code reviewer know that this register is clear on read?
Kvasir::Register allows a BitLocation to store access information. If the chip abstraction implementer did a good
job when making the bit-field register, then this information is known by the library:

if(apply(read(register)) & 0x01){/*...*/}
//^ compiler issues an error telling you to use readAndClear
if(apply(readAndClear(register)) & 0x01){/*...*/}
//^ potential danger can be easily seen in code review

What About Reading Multiple Values?

In most cases, there’s no real reason to read multiple values in one apply statement. However, if the bit fields
you want to read are all in the same register, it can be more efficient to read once and then mask off the different
parts later. Since we want to be at least as efficient as C in all circumstances, we should solve this problem.

More importantly, though, some registers contain multiple bit fields but are clear on read. Without multiple
read support, it would be impossible to access them correctly. Therefore, Kvasir also supports multiple reads in
one apply statement and returns a kind of tuple containing all results:

auto result = apply(read(field1),read(field2));
if(get<0>(result) == 4){/*...*/} //access by index like std::tuple
if(get(result, field2) == 8){/*...*/}
//^ access by bit location also possible and can be more clear

One can also mix reads and writes into one apply statement. However, this is only advantageous when both act
on the same register.

What About Writing Run-Time Known Values?

Thus far, I have only shown examples where the values going into the registers are known at compile time. It
may be counterintuitive, but I have found that the majority of values written in small processor embedded
programs are actually known at compile time. Nevertheless, there are bound to be some that are not. The syntax
is actually identical, although a completely different overloaded write() function is used “under the hood.”

void f(Can::Modes m){
apply(write(Can::mode,m));
}

Needless to say, we can’t make the same optimizations on run-time known values as in the above compile-time
examples. However, there are a few corner cases that will allow the optimizer to do more for us (by marking less
variables volatile than the user otherwise would). Kvasir can provide type safety (e.g., when using strongly
classed enums, etc.), though, and eliminate off-by-one shifting errors. Kvasir can also guarantee that if the chip
abstraction is correct, no bit-field access will overflow into other fields, or reserved bits if the value written is
larger than the field.

There’s an inherent tradeoff here. By masking and shifting the values at run time, we may be less efficient than
equivalent C code in the special case when the user knows that the value is within range or that the value is
already correctly shifted. When choosing between safety and efficiency, I would always argue for safety, but then
again, as stated by Bjarne Stroustrup, “no one knows what most C++ programmers do.”

Instances in which the user knows that the value has been masked and shifted correctly are not as common as it
would seem. If the value in question did not come from outside the program (through an input port etc.), it’s

An Evolution of Special Function Register Abstraction http://electronicdesign.com/print/dev-tools/evolution-special-function-reg...

6 of 10 10/13/2015 12:39 PM

ghly likely that it’s known at compile time. If it did come in from the outside world, then who’s to say that’s
not out of bounds and needs to be masked?

At times, there’s a corner case where we want to mask and shift a variable once and then write it to the register
multiple times. In that case, it’s possible to store result of the write() function.

Are there more common corner cases? Should Kvasir also provide an unsafeWrite(), which doesn’t perform
masking or shifting? Should we also provide an unsafeRead(), too? I would like to hear your input in the
comments.

So what is this spi0 variable, and how exactly do I make my own chip abstractions? The Kvasir::Register
module uses the concept of a Kvasir::Register::BitLocation, which stores the address, access rights (e.g.,
read only), special functionality (e.g., clear on read), mask, associated type (e.g., strongly classed enum), and
writable (e.g., non-reserved) bits of a particular bit field in a register.

Kvasir::Register::apply is a variadic function template that takes parameters of type
Kvasir::Register::Action. It should be noted that because BitLocation, Action, and apply() are all in the
same namespace, Argument Dependent Lookup (otherwise known as ADL or könig lookup) will find the correct
functions without namespace qualification.

Since the data must be available for compile-time evaluation, the parameters to BitLocation and Action are
encoded into the type of the object. If you are not familiar with C++ template meta programming, you may find
this section confusing—don’t worry, you can still use the library. After all, few C++ programmers understand
how std::regex or std::tuple are implemented, but they’re used every day.

using Address = Register::Address<0x400740C8,
Register::maskFromRange(8,8,12,11,16,14,20,20,22,22,31,24)>;
//^ mask of reserved bits
constexpr Register::RWBitLocT spi0;
constexpr Register::RWBitLocT spi1;

Here RWBitLocT is a handy alias for creating read writable BitLocations. Making a chip abstraction file may
be tedious, though. As mentioned above, it only has to be done once by one person (and properly
open-sourced).

The set() and clear() functions take a BitLocation as a parameter and return an Action.

Two Actions can be merged (combined) if they act on different bit fields of the same register. For example, a
write to a given bit field probably consists of:

• A read of the whole register

• The application of a mask to clear only the related bits

• A bitwise of the value to be written

• A write back to the register

If we have two writes to different bit fields of the same register, we can combine the masks and the values and
only perform one read-modify-write.

An Evolution of Special Function Register Abstraction http://electronicdesign.com/print/dev-tools/evolution-special-function-reg...

7 of 10 10/13/2015 12:39 PM

nstexpr Meta Functions

Changing one type to another is usually the domain of meta functions. But these have odd syntax and, after all, a
library is often only as good as its public interface. So we must find a better way. Luckily, constexpr variables
cost nothing and one can use templates with constexpr functions. Therefore, rather than writing:

typename Clear::Type{}

we can declare a constexpr function to do that for us:

template
constexpr typename Clear::Type clear(T){ return {}};

Kvasir makes heavy use of this “constexpr meta function” pattern to improve public interface syntax. Functions
like set(), clear(), toggle(), read(), write(), blindWrite(), readAndClear(), push(), and pop() take a
bit location (sometimes only those with certain access policies or field sizes) and return an Action. Others like
atomic() and isolated() take an Action and return a modified version. In Kvasir::IO, we use a PinLocation
template with contexpr meta functions like makeOpenDrain(), makeOutput(), or overloads of set(),
clear(), and read(), which take a PinLocation and return an Action.

The apply() Function

Within a list of Actions, the order of execution is not defined because this allows more optimization. In cases
where a strict order is desired, one can break the list up and call apply() multiple times or use a
sequencePoint.

The implementation of apply() is beyond the scope of this article and will surely evolve over time. If you are
interested, have a look at the Kvasir library at kvasir.io. As of this writing, it essentially does the following:

• Tags every Action with the index of its possible runtime parameter

• Flattens any sub lists into the main list

• Splits this list of parameters by sequencePoint

• Sorts each piece by register address

• Merges reads and writes to the same address wherever possible

• Preforms any other known optimizations

• Masks, merges and passes eventual runtime parameters to their respective Actions

• Executes each (merged) Action

• Collects the results of reads

• Stores and returns the results of reads into a tuple if necessary

• In case of only one return, the value is masked appropriately and properly typecasted

• Returns the tuple or read value if needed

If you can think of other possible optimizations or handy features, please comment, contact me, or fork on

An Evolution of Special Function Register Abstraction http://electronicdesign.com/print/dev-tools/evolution-special-function-reg...

8 of 10 10/13/2015 12:39 PM

hub. We are currently working on optimizations that take advantage of the LDM and STM (load multiple
and store multiple) commands, which the optimizer is often not allowed to do in hand-coded C due to volatile
constraints.

It should be noted that at the time of this writing, the Kvasir library is still young and therefore may have a
volatile public interface, have bugs, or miss certain minor features. In writing about it at this beta stage, I hope
to solicit comments and suggestions from other experts before freezing the public interface or making
commitments to bad design patterns.

General-Purpose IO

Configuring GPIO pins is an easy task for Kvasir::IO. As mentioned above, Kvasir provides the concept of a
PinLocation, which the user can easily create with a factory function as well as a bunch of Action factories
that take a PinLocation as a parameter:

using namespace Kvasir::IO;
constexpr auto alarmLed = pinLocation(port0,pin4);
constexpr auto alarmHorn = pinLocation(port0,pin8);
//configuration
apply(makeOutput(alarmLed, alarmHorn),makeOpenDrain(alarmHorn));
//use
apply(toggle(alarmLed),clear(alarmHorn));

Thread Safety

One may think that when not using a scheduler there is no need for thread safety. However, when different
interrupt priorities access the same SFR, the potential exists for a race condition as is commonly the case with
different threads. If a thread is interrupted in the middle of a read-modify-write cycle and the same register is
modified in the interrupting thread or ISR, the modification will be lost even if it only affects unrelated bits.
There are essentially three possible ways to solve this problem:

1. Modify all Actions to be atomic except for those in the ISR with the highest priority.

2. Modify all Actions to use 8- or 16-bit access mode and only access a specific 8- or 16-bit piece at one priority

3. Disable interrupts or introduce other locking mechanisms.

Option 1 is only possible in cases where we can either use bit banding or when we modify all of the writable bits
(excluding read only and reserved) in an 8-, 16-, or 32-bit section. We can modify an Action or multiple
Actions to be atomic using the atomic() modifier function. If the Action, or Actions, passed to atomic()
cannot be made into an atomic Action (after merging), the library will issue a static assertion (plain text error
message at compile time).

Option 2 is actually more applicable then one might think. Of all the bit fields in special function registers, over
half of them are either reserved, never modified, or only modified during startup. The remaining fields are often
loosely ordered by function, which typically matches how one would divide them between threads or ISR
priorities. Thus, chances are high that if a bit field is larger than 1 bit (in which case bit banding is probably
possible), it doesn’t share a byte with another bit field that’s modified at a different priority. Kvasir provides an
Action modifier function called isolated(), which will constrain SFR access to the narrowest possible width.

An Evolution of Special Function Register Abstraction http://electronicdesign.com/print/dev-tools/evolution-special-function-reg...

9 of 10 10/13/2015 12:39 PM

tion 3 should really only be a last resort, since it has run-time cost and cannot be done automatically for the
user. Kvasir::Atomic will eventually provide more tools for this, but at the time of this writing, this module is
too young.

Merging and Managing Initialization

As mentioned earlier, many special function registers are modified only at startup. Because of potential race
conditions or initialization order bugs, it would be nice to increase static checking here as well. If we choose to
group different parts of our program into modules or objects (i.e., classes), we may think of this as part of the
constructor.

I argue that actually using a constructor is false, since the SFRs in question are not part of the class and are
actually often shared with other classes. This is a special architecture that we don’t encounter during classical
application development. On the other hand, it’s good design to group code into modules where possible. It’s
also a unique situation in the embedded world, where we would like to have the majority of initialization done
before interrupts are turned on.

Using Kvasir::Register, we can express this initialization in the form of Actions. But in this case, we don’t want
to apply them at the site of their definition. We would rather save them in a constexpr variable named init,
which is publicly accessible:

using namespace Kvasir::IO;
class ArmageddonWarning {
static constexpr auto alarmLed = pinLocation(port0,pin4);
static constexpr auto alarmHorn = pinLocation(port0,pin8);
public:
//configuration
static constexpr auto inti =
list(makeOutput(alarmLed, alarmHorn),
makeOpenDrain(alarmHorn));
//use
void warn(){
apply(toggle(alarmLed),set(alarmHorn));
}
}

We must pass all of our objects to the variadic KVASIR_START() macro, which will extract all init lists,
merge them, and apply them all before interrupts are enabled or main is entered. This is handy for detecting
initialization clashes; if two objects modify the same bit field with different values, you get a compiler error (no
more initialization order bugs). It’s also considerably more efficient—instead of 20 different modules all turning
on power, clock, etc., it needs only one merged read-modify-write. Using merged initialization can shrink a
small program more than 10-fold compared with LPCOpen or mbed!

Source URL: http://electronicdesign.com/dev-tools/evolution-special-function-register-abstraction

An Evolution of Special Function Register Abstraction http://electronicdesign.com/print/dev-tools/evolution-special-function-reg...

10 of 10 10/13/2015 12:39 PM

