Common Embedded Vulnerabilities, Part 1: Code Injection http://electronicdesign.com/print/embedded/common-embedded-vulnerab...

<lectronic prine | close

design
Common Embedded Vulnerabilities, Part 1: Code Injection

Electronic Design
Paul Anderson

Wed, 2015-05-06 14:20

Because many embedded systems have not historically been connected to networks, or since it was reasonable
to expect that the devices would operate in a trusted environment, there’s been relatively low risk of security
vulnerabilities. However, as the Internet of Things era comes upon us, all of that has changed.

Embedded devices are now being built with a high level of networking in mind, and they will be deployed in
environments where hostile and resourceful attackers are poised to take advantage of source-code-level security
vulnerabilities. Developers of software for embedded systems would be well advised to understand the different
kinds of security vulnerabilities, so that they can take measures to defend against hackers.

This article, which focuses on code-injection vulnerabilities, is the first in a series of articles that will discuss
how an attacker can exploit defects in an application’s source code.

What is Code Injection?

The term “code injection” means that a regular data input to a program can be crafted to contain code, and that
the program can be tricked into executing that code. To an attacker, a code-injection defect is golden, because
that opens the door to hijack an existing process and then execute whatever code is preferred with the same
level of privileges as the original process.

Related

Q&A With GrammaTech

GrammaTech CodeSonar

Klocwork Source Code Analysis

In many embedded systems, processes need to run with the highest privileges available, so a successful
code-injection attack can give the attacker complete control over the entire machine. Once in, it becomes
possible to steal data, cause the device to malfunction, infect it with a worm, recruit it as a member of a botnet,
or even render it permanently inoperable.

Many of the famous computer security incidents over the last few decades have been caused by code-injection
vulnerabilities. For example, certain kinds of buffer overruns can be exploited for code injection. Similarly, SQL
injection defects are also in that class. A good technical description of the category, along with some examples,
can be found here.

As mentioned above, the key aspects of a code-injection vulnerability are the following:

» The program reads data from an input channel.

1of5 5/6/2015 3:11 PM

Common Embedded Vulnerabilities, Part 1: Code Injection http://electronicdesign.com/print/embedded/common-embedded-vulnerab...

2 0of5

1e program treats the data as code and interprets it.

In most cases, it's unusual for a program to deliberately execute data as code (although this is a requirement of a
shell or an interpreter with a read-eval-print interface). However, it's very common for data to be used to
construct an object that is intentionally executed.

For example, a naive programmer who wishes to issue an SQL query might read a string from the user into a
variable (say nameString) and then construct a query in a string as follows:

"SELECT * FROM Names WHERE Id =" + nameString

If the user enters a well-formed name, then all is well. However, a malicious user can easily exploit this by
entering a string containing the SQL statement "x;DROP TABLE Users;", which executes the SQL query:

"SELECT * FROM Names WHERE Id = x; DROP TABLE Users;"
The net effect is that one of the tables gets deleted from the database. For an amusing take on this, see this xkcd.

In the above example, the “code” is an SQL query that got injected into the SQL interpreter. An embedded
system is unlikely to contain an SQL interpreter (although some certainly do), but plenty of other examples of
code-injection vulnerabilities are more likely to appear in embedded code. C programs, for instance, are prone
to the format-string vulnerability.

Format-String Vulnerabilities

Almost all C programmers are familiar with the printf family of functions. Roughly speaking, these take a
format string followed by a list of other arguments, and that format string is interpreted as a set of instructions
for rendering the remaining arguments as strings.

The language for specifying the format is quite complicated and can be tricky. Most users are familiar with the
approaches to writing the most commonly used format specifiers, such as those for strings, decimals, and floats
(%s, %d, %f), but not many are aware that some other format-string directives can be badly abused.

Before | explain how the code-injection vulnerability can arise, let me point out the most common misuse of the
printf function. Unfortunately, some programmers are in the habit of printing strings as follows:

printf(str);

Although most times this will have the desired effect, it's still wrong because that first argument to printf will be
interpreted as a format string. Therefore, if str contains any format specifiers, they will be interpreted as such.

For example, if str contains “%d”, it will interpret the next value in the argument list to printf as an integer and
convert it to a string. In this case, there are no more arguments, but the implementation cannot know that. All it
knows is that some number of arguments to the function was pushed on the stack. Because no mechanism in
the C runtime exists to let it know there are no more arguments, printf will simply pick the next item that
happens to be on the stack, interpret that as an integer, and print it. It’s easy to see that this can be used to print
an arbitrary amount of information from the stack. If str contained “%d %d %d %d”, for example, then it would
print the values of the next four words on the stack.

This is a code-injection security vulnerability in its own right, but one might be forgiven for concluding that the
only potential damage is that it’s used to gain access to data on the stack. This can be bad if it contains sensitive
data such as a password or a certificate key. However, it could also be a lot worse, because an attacker can write
to arbitrary memory addresses.

5/6/2015 3:11 PM

Common Embedded Vulnerabilities, Part 1: Code Injection http://electronicdesign.com/print/embedded/common-embedded-vulnerab...

30f5

» format specifier that makes this possible is "%n". Normally, the corresponding argument is a pointer to an

:ger. As the format string is being interpreted to build up the result string, when the %n is seen, the number
of bytes written so far is placed in the memory location indicated by this pointer. For example, after the printf
below has completed, the value in i will be 4:

printf("1234%n", &i);

Remember that if there are fewer actual arguments to the function than format specifiers, printf will just
interpret whatever is on the stack as the arguments. So, if the attacker can control the format string, he can
write essentially arbitrary values to stack locations. The stack is where local variables are located, thus making it
possible to change their values. If some of those variables are pointers, then this gives the attacker a platform to
reach other non-stack addresses in memory.

The really juicy targets are those that give the attacker control over the execution of the program. If one of those
local variables is a function pointer, then subsequent calls through that pointer can be to code of the attacker’s
choice. Or, the attack can overwrite the address of the instruction to where control will be transferred upon
return of the function.

| have made some assumptions about stack layout, and for space reasons | can’t go into the full details of exactly
how these attacks are crafted, but there is plenty of information available for those who wish to know more. The
CWE entry is a good starting point.

Avoiding Code Injection

The best way to avoid code injection is through design. It’s best if you can use a language where such
vulnerabilities can never show up, because your code is then immune by construction. Or design your code to
prohibit interfaces that may lead to these kinds of issues.

Unfortunately, in embedded systems, these choices aren’t always feasible. Even though C is a highly hazardous
language that’s riddled with vulnerabilities such as these, it remains the language of choice for many
organizations. Given that, developers should be aware of other methods of avoidance.

There are two golden rules for preventing code-injection vulnerabilities:

e Don’t interpret data as code if you can avoid it.
« If you can’t avoid it, make sure you validate that the data is well formed before using it.

To avoid the format-string vulnerability, the first of these rules is most appropriate. You can write the code as
follows:

printf("%s", str);

This way, the contents of str are treated only as data. This is a no-brainer as long as you can easily find all of the
places that should be changed, which can be tricky for large programs, and especially so if you're using libraries
of third-party code.

To avoid the SQL injection example from above, you can inspect nameString to make sure it’s a single word with
no whitespace or semicolons.

Dynamic Analysis

Testing for these kinds of vulnerabilities can be very difficult. Even tests that achieve very high code coverage
can still fail to trigger these problems. Usually, test cases are constructed to validate functionality under normal

5/6/2015 3:11 PM

Common Embedded Vulnerabilities, Part 1: Code Injection http://electronicdesign.com/print/embedded/common-embedded-vulnerab...

4 of 5

:umstances. When testing for security vulnerabilities, the tester must adopt the mindset of a determined and
_enious attacker. Techniques like fuzz testing can be useful for searching for particular kinds of code-injection
defects, such as places where data is being used as format strings. However, that technique is typically too
random to be highly reliable.

Static Analysis

Static analysis can be very effective at finding code-injection vulnerabilities. Note that early-generation static-
analysis tools (such as lint and its immediate descendants) are weak at finding these because a whole-program,
path-sensitive analysis is needed in order to be precise. The advanced static-analysis tools that have emerged in
recent years are more effective. Vendors of these tools have accumulated a lot of experience about which
interfaces are hazardous, and developed a knowledge base of what to look for, and how to do so effectively,
without drowning the user in a sea of false positive results.

The key technique we use to do this is called “taint analysis,” or sometimes “hazardous information flow
analysis.” These tools work by first identifying sources of potentially risky data, and by tracking how that
information flows through the code to locations where it’s being used without having been validated. The best
tools allow you to also visualize the flow.

length = recvi{cptr—>fd, readbuf, simsof(readbuf), 0);

cptr->lasttime =
if (cpt =1

' if -Jﬁqﬂ <. 0 &L EFREN F J]
return 1.
= 1f (langeth <=)
retuzrn length;
$ifdef DEBDOMODE
" if [!memcap(Deadbuf, DEBUGMODEI INFO, 2))

oi\grammaltech ' projechunrealimdwnneal_cso_release projechinciude\siruct h
i

#define I i (£.3] E - TEH (x})
L

plgrammatech\projscrunraalired uneal cos release srojecfineiideleimet b
&
§ola T i BLG LOG Mix) ayvaremix)
v
Command injection
A tainded sh nenrifis | line
= *readbul SvELEaES 0 ¢ n_bedl 51807
LREF S 11T lnimed L

The Essug can otcur if e highlighted code execules

s 4 ard 8
how Al pvents | Onky prenary event

To illustrate its effectiveness, | offer the following example. In a program that implemented an Internet Relay
Chat (IRC) server, a command injection vulnerability was found (see the figure). This was in a location where
unsanitized data from the network was being passed as input to the system() function. Shown is a screenshot
from CodeSonar (the static-analysis tool | work on).

The call to system() in this case was buried two levels deep in the body of a macro whose name implied it was
responsible for some benign logging of activity. Once the macros were expanded, however, it became clear that
this was a backdoor that was maliciously and deliberately inserted and disguised as something harmless. When
deployed, this allowed anyone who knew the code to run code on the host computer with the same privileges as
the server.

Conclusion

5/6/2015 3:11 PM

Common Embedded Vulnerabilities, Part 1: Code Injection http://electronicdesign.com/print/embedded/common-embedded-vulnerab...

le-injection vulnerabilities are extremely dangerous security issues because they can allow an attacker to

rupt the program and sometimes even take complete control of the computer. Developers who care about
making sure their embedded code is secure for use in a potentially hostile networked environment should try
hard to eliminate these vulnerabilities early in the development cycle. They can be difficult to find using
traditional testing techniques, so stringent code inspections and use of advanced static-analysis tools is highly
recommended.

Source URL: http://electronicdesign.com/embedded/common-embedded-vulnerabilities-part-1-
code-injection

50f5 5/6/2015 3:11 PM

