
28 MAY 2015 ELECTRONIC DESIGN

T
hat embedded system you are designing better be
secure, or it might be hacked. Of course, preventing
this depends on what you’re going to protect. There
are those who simply want to crash a system, others

who want to take it over for nefarious purposes, and still others
who wish to get inside to “steal” those valuable algorithms.

In the past, processors simply started running and security
was something that was implemented in the program or operat-
ing system. It came down to who you trust and how well they
did their job. Burroughs mainframes I worked on many years
ago were protected by the compilers, as well as a file system that
prevented hacking by limiting the instructions that were emit-
ted or preventing files from being marked as executable.

Initially microcontrollers and microprocessors took a similar
approach, with features such as memory protection being add-
ed that allowed applications to be placed into a sandbox. Virtu-
alization extended this further to the point where high-end sys-
tems virtualize the entire system. Securing the sandbox works,
assuming the base software/hardware can’t be compromised.

That assumption is not always warranted. For example, most
hardware has some form of software involved like the control-
lers on hard drives. One may think that the data on the hard
drive would be maintained and just the data needed protection,
possibly using an encrypted hard drive. Unfortunately, we now
know that this is not the case, since modifying this firmware is
one way a group has infiltrated some storage devices (see “Hack-
ing Hard Drives and Other Nasties” on electronicdesign.com).

Secure boot and encrypted code are ways to prevent the ini-
tial attack from succeeding. One-time-programmable (OTP) or
ROM-based solutions others, but these prevent essential field
updates. Some platforms also allow the debug or JTAG support
to be disabled, often via OTP flags, so application code is no
longer directly accessible—making reverse engineering more
difficult. Some systems go to tamper-resistant extremes that
erase the code and data if an attack is detected.

Texas Instruments’ (TI) MSP432 has an interesting approach
to protecting application code that has some useful implica-
tions. The MSP432 is based on an ARM Cortex-M4F core (see
the figure). The protection scheme allows multiple blocks of

flash to be execute-only, but it takes this a step further by allow-
ing the code to access data within the same block. JTAG will not
reveal the contents of the code or data.

There can be multiple blocks defined and encryption keys
are used to verify and allow updates so a block cannot simply be
removed and replaced by a malicious actor. The MSP432 does
not have a security key store or OTP support, but these can be
implemented using the software protection scheme.

The approach allows a vendor to include runtime support on
a chip and then provide it to a developer. The developer can call
the support routines, but they won’t have direct access to the
code that could be disassembled. The scheme actually works for
multiple vendors to provide services on the same chip.

The Many Faces of
Embedded Security
While there is no such thing as absolute security, it is possible to make things much more
difficult for a would-be attacker.

BILL WONG | Embedded/Systems/Software Editor

bill.wong@penton.com

Industry Trends

Unsecure zone

Unsecure zone

IP protected zone 0

IP protected zone 1

IP protected zone 2

IP protected zone 3

Unsecure zone

Unsecure zone

Texas Instruments’ MSP432 microcontroller is based on an ARM

Cortex-M4F core, but adds a software IP protection scheme that

allows multiple blocks of flash to be execute-only. Even JTAG will

not reveal the contents of the code.

